Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791186

RESUMO

Malignant melanoma represents a form of skin cancer characterized by a bleak prognosis and heightened resistance to traditional therapies. Quercetin has demonstrated notable anti-carcinogenic, anti-inflammatory, anti-oxidant, and pharmacological effects across various cancer types. However, the intricate relationship between quercetin's anti-cancer properties and ganglioside expression in melanoma remains incompletely understood. In this study, quercetin manifests specific anti-proliferative, anti-migratory, and cell-cycle arrest effects, inducing mitochondrial dysfunction and apoptosis in two melanoma cancer cell lines. This positions quercetin as a promising candidate for treating malignant melanoma. Moreover, our investigation indicates that quercetin significantly reduces the expression levels of ganglioside GD3 and its synthetic enzyme. Notably, this reduction is achieved through the inhibition of the FAK/paxillin/Akt signaling pathway, which plays a crucial role in cancer development. Taken together, our findings suggest that quercetin may be a potent anti-cancer drug candidate for the treatment of malignant melanoma.


Assuntos
Apoptose , Gangliosídeos , Melanoma , Mitocôndrias , Quercetina , Quercetina/farmacologia , Humanos , Melanoma/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Apoptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Gangliosídeos/metabolismo , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612859

RESUMO

Chronic sinusitis with nasal polyps (CRSwNP) is one of the most common chronic inflammatory diseases, and involves tissue remodeling. One of the key mechanisms of tissue remodeling is the epithelial-mesenchymal transition (EMT), which also represents one of the pathophysiological processes of CRS observed in CRSwNP tissues. To date, many transcription factors and forms of extracellular stimulation have been found to regulate the EMT process. However, it is not known whether gangliosides, which are the central molecules of plasma membranes, involved in regulating signal transmission pathways, are involved in the EMT process. Therefore, we aimed to determine the role of gangliosides in the EMT process. First, we confirmed that N-cadherin, which is a known mesenchymal marker, and ganglioside GD3 were specifically expressed in CRSwNP_NP tissues. Subsequently, we investigated whether the administration of TNF-α to human nasal epithelial cells (hNECs) resulted in the upregulation of ganglioside GD3 and its synthesizing enzyme, ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialytransferase 1 (ST8Sia1), and the consequently promoted inflammatory processes. Additionally, the expression of N-cadherin, Zinc finger protein SNAI2 (SLUG), and matrix metallopeptidase 9 (MMP-9) were elevated, but that of E-cadherin, which is known to be epithelial, was reduced. Moreover, the inhibition of ganglioside GD3 expression by the siRNA or exogenous treatment of neuraminidase 3 (NEU 3) led to the suppression of inflammation and EMT. These results suggest that gangliosides may play an important role in prevention and therapy for inflammation and EMT.


Assuntos
Inflamação , Pólipos Nasais , Humanos , Gangliosídeos , Caderinas/genética , Células Epiteliais , Transição Epitelial-Mesenquimal
3.
Plant Biotechnol J ; 21(12): 2458-2472, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37530518

RESUMO

Numerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement. We assembled its genome at the scaffold level. After functional annotations, we identified homoeologous gene sets, with similar sequence and expression profiles, based on comparative analyses of orthologous genes with close diploid relatives Solanum americanum and S. lycopersicum. Using CRISPR-Cas9-mediated mutagenesis, we generated various mutation combinations in homoeologous genes. Multiple mutants showed quantitative phenotypic changes based on the genotype, resulting in a broad-spectrum effect on the quantitative traits of hexaploid S. nigrum. Furthermore, we successfully improved the fruit productivity of Boranong, an orphan cultivar of S. nigrum suggesting that engineering homoeologous genes could be useful for agricultural improvement of polyploid crops.


Assuntos
Produtos Agrícolas , Poliploidia , Sequência de Bases , Mapeamento Cromossômico/métodos , Mutação , Fenótipo , Produtos Agrícolas/genética , Genoma de Planta/genética , Edição de Genes
4.
Molecules ; 28(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298765

RESUMO

Various proteins introduced into living modified organism (LMO) crops function in plant defense mechanisms against target insect pests or herbicides. This study analyzed the antifungal effects of an introduced LMO protein, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium sp. strain CP4 (CP4-EPSPS). Pure recombinant CP4-EPSPS protein, expressed in Escherichia coli, inhibited the growth of human and plant fungal pathogens (Candida albicans, C. tropicalis, C. krusei, Colletotrichum gloeosporioides, Fusarium solani, F. graminearum, and Trichoderma virens), at minimum inhibitory concentrations (MICs) that ranged from 62.5 to 250 µg/mL. It inhibited fungal spore germination as well as cell proliferation on C. gloeosporioides. Rhodamine-labeled CP4-EPSPS accumulated on the fungal cell wall and within intracellular cytosol. In addition, the protein induced uptake of SYTOX Green into cells, but not into intracellular mitochondrial reactive oxygen species (ROS), indicating that its antifungal action was due to inducing the permeability of the fungal cell wall. Its antifungal action showed cell surface damage, as observed from fungal cell morphology. This study provided information on the effects of the LMO protein, EPSPS, on fungal growth.


Assuntos
Antifúngicos , Fosfatos , Humanos , Antifúngicos/farmacologia , Plantas Geneticamente Modificadas/metabolismo , Fosfatos/farmacologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Fungos/metabolismo , Proteínas Recombinantes/farmacologia , Óxido Nítrico Sintase
6.
Discov Oncol ; 14(1): 36, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36991237

RESUMO

Malignant melanoma is a skin cancer with poor prognosis and high resistance to conventional treatment. 7,8-dihydroxyflavone (7,8-DHF) has shown anti-carcinogenic, anti-inflammatory, anti-oxidant, and pharmacological effects in several types of cancer. However, the relationship between ganglioside expression and the anti-cancer effects of 7,8-DHF in melanoma is not fully understood. In the present study, 7,8-DHF exhibits specific anti-proliferation, anti-migration, and G2/M phase cell-cycle arrest effects on both melanoma cancer cell lines, and induces mitochondrial dysfunction and apoptosis, making it a potent candidate for anti-melanoma treatment. Furthermore, we confirmed that 7,8-DHF significantly reduces the expression levels of ganglioside GD3 and its synthase, which are known to be closely involved in carcinogenesis. Taken together, our findings suggest that 7,8-DHF may be a potent anti-cancer drug candidate for the treatment of malignant melanoma.

7.
Front Plant Sci ; 13: 894545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620680

RESUMO

Rice cultivation needs extensive amounts of water. Moreover, increased frequency of droughts and water scarcity has become a global concern for rice cultivation. Hence, optimization of water use is crucial for sustainable agriculture. Here, we characterized Loose Plant Architecture 1 (LPA1) in vasculature development, water transport, drought resistance, and grain yield. We performed genetic combination of lpa1 with semi-dwarf mutant to offer the optimum rice architecture for more efficient water use. LPA1 expressed in pre-vascular cells of leaf primordia regulates genes associated with carbohydrate metabolism and cell enlargement. Thus, it plays a role in metaxylem enlargement of the aerial organs. Narrow metaxylem of lpa1 exhibit leaves curling on sunny day and convey drought tolerance but reduce grain yield in mature plants. However, the genetic combination of lpa1 with semi-dwarf mutant (dep1-ko or d2) offer optimal water supply and drought resistance without impacting grain-filling rates. Our results show that water use, and transports can be genetically controlled by optimizing metaxylem vessel size and plant height, which may be utilized for enhancing drought tolerance and offers the potential solution to face the more frequent harsh climate condition in the future.

8.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830075

RESUMO

This study aimed to investigate the effects of the human macrophage (MP) secretome in cellular xenograft rejection. The role of human nucleoside diphosphate kinase A (hNME1), from the secretome of MPs involved in the neuronal differentiation of miniature pig adipose tissue-derived mesenchymal stem cells (mp AD-MSCs), was evaluated by proteomic analysis. Herein, we first demonstrate that hNME1 strongly binds to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (pST8SIA1), which is a ganglioside GD3 synthase. When hNME1 binds with pST8SIA1, it induces degradation of pST8SIA1 in mp AD-MSCs, thereby inhibiting the expression of ganglioside GD3 followed by decreased neuronal differentiation of mp AD-MSCs. Therefore, we produced nanobodies (NBs) named NB-hNME1 that bind to hNME1 specifically, and the inhibitory effect of NB-hNME1 was evaluated for blocking the binding between hNME1 and pST8SIA1. Consequently, NB-hNME1 effectively blocked the binding of hNME1 to pST8SIA1, thereby recovering the expression of ganglioside GD3 and neuronal differentiation of mp AD-MSCs. Our findings suggest that mp AD-MSCs could be a potential candidate for use as an additive, such as an immunosuppressant, in stem cell transplantation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Gangliosídeos/biossíntese , Células-Tronco Mesenquimais/enzimologia , Nucleosídeo NM23 Difosfato Quinases/farmacologia , Neurônios/enzimologia , Sialiltransferases/antagonistas & inibidores , Animais , Humanos , Sialiltransferases/metabolismo , Suínos , Porco Miniatura
9.
Anticancer Res ; 41(3): 1315-1325, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33788723

RESUMO

BACKGROUND/AIM: The aim of this study was to reveal the novel roles of calmodulin 2 (CALM2) in hepatocellular carcinoma (HCC) progression. MATERIALS AND METHODS: The effects of knockdown of CALM2 expression by siRNA were investigated using various experimental approaches in both cellular and molecular levels. RESULTS: Silencing of CALM2 inhibited HCC cell proliferation and colony formation through induction of apoptosis. At the molecular level, CALM2-specific knockdown led to the common dysregulation of 154 genes in HCC cells. Notably, E2F transcription factor 5 (E2F5), which is functionally associated with migration, invasion and proliferation, was generally down-regulated. These functional associations were confirmed in HCC clinical samples. Reflecting the molecular changes, CALM2 knockdown reduced the migration and invasion abilities of HCC cells and abrogated the potency of tumor formation in vivo. CONCLUSION: Targeting CALM2 may be a molecular strategy for both primary HCC treatment and prevention of metastasis or recurrence.


Assuntos
Calmodulina/fisiologia , Carcinoma Hepatocelular/patologia , Fator de Transcrição E2F5/fisiologia , Neoplasias Hepáticas/patologia , Apoptose/efeitos dos fármacos , Calmodulina/antagonistas & inibidores , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Metástase Neoplásica , Células-Tronco Neoplásicas/fisiologia
10.
Int J Mol Sci ; 21(22)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233448

RESUMO

In recent decades, many studies on the treatment and prevention of pancreatic cancer have been conducted. However, pancreatic cancer remains incurable, with a high mortality rate. Although mouse models have been widely used for preclinical pancreatic cancer research, these models have many differences from humans. Therefore, large animals may be more useful for the investigation of pancreatic cancer. Pigs have recently emerged as a new model of pancreatic cancer due to their similarities to humans, but no pig pancreatic cancer cell lines have been established for use in drug screening or analysis of tumor biology. Here, we established and characterized an immortalized miniature pig pancreatic cell line derived from primary pancreatic cells and pancreatic cancer-like cells expressing K-rasG12D regulated by the human PTF1A promoter. Using this immortalized cell line, we analyzed the gene expression and phenotypes associated with cancer cell characteristics. Notably, we found that acinar-to-ductal transition was caused by K-rasG12D in the cell line constructed from acinar cells. This may constitute a good research model for the analysis of acinar-to-ductal metaplasia in human pancreatic cancer.


Assuntos
Pâncreas/metabolismo , Neoplasias Pancreáticas/genética , Lesões Pré-Cancerosas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Pâncreas/patologia , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Transdução de Sinais/genética , Suínos , Porco Miniatura
11.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171878

RESUMO

Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from various tissues in the adult body. MSCs should be characterized by three criteria for regenerative medicine. MSCs must (1) adhere to plastic surfaces, (2) express specific surface antigens, and (3) differentiate into mesodermal lineages, including chondrocytes, osteoblasts, and adipocytes, in vitro. Interestingly, MSCs have immunomodulatory features and secrete trophic factors and immune receptors that regulate the microenvironment in host tissue. These specific and unique therapeutic properties make MSCs ideal as therapeutic agents in vivo. Specifically, pre-clinical and clinical investigators generated inflammatory and fibrotic diseases models, and then transplantation of MSCs into diseases models for therapeutic effects investigation. In this review, we characterize MSCs from various tissues and describe their applications for treating various inflammation and fibrotic diseases.


Assuntos
Fibrose/terapia , Inflamação/terapia , Células-Tronco Mesenquimais/metabolismo , Adipócitos/citologia , Animais , Diferenciação Celular , Condrócitos/citologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Medicina Regenerativa/métodos
12.
Int Immunopharmacol ; 86: 106553, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32563057

RESUMO

Although tacrolimus (FK-506) has been shown to be an effective monotherapy for psoriasis, it does not always work well. Currently, combination therapy is frequently used to manage psoriasis because clinical trials have shown it may provide additive or synergistic benefits and reduce risks of adverse effects. Myeloid-derived suppressor cells (MDSCs) have potent immunomodulatory and anti-inflammatory properties in autoimmune diseases. We previously reported that MDSCs had protective effects in a murine model of imiquimod (IMQ)-induced psoriasis. The present study was undertaken to investigate the systemic immunomodulatory and therapeutic efficacy effects of MDSC plus FK-506 in an IMQ-induced mouse model of psoriasis and to investigate the immunomodulatory mechanisms involved. Systemic MDSC plus FK-506 therapy was found to have a significant anti-psoriatic effect in the murine model, to reduce levels of pro-inflammatory cytokines Th1 cytokines (TNF-α and IFN-γ) and Th17 cytokines (IL-17A and IL-23) in serum and skin. However, treatment with MDSCs or FK-506 alone had little impact. Furthermore, the anti-psoriatic effects of MDSC plus FK-506 were associated with histopathological reductions in inflammatory infiltration, epidermal hyperplasia, and hyperkeratosis. In addition, this combined treatment also attenuated IMQ-induced splenomegaly, and increased the proportion of CD4+CD25+FoxP3+ regulatory T (Treg) cells and decreased the proportions of CD4+IFN-γ+ Th1 cells and CD4+IL-17+ Th17 cells in spleen. Taken together, our results show systemic combination therapy with MDSCs and FK-506 had a better therapeutic effect in our IMQ-induced psoriasis model than either agent alone, and suggest that this combinatorial therapy might be useful for the management of autoimmune skin diseases like psoriasis.


Assuntos
Imunossupressores/farmacologia , Células Supressoras Mieloides/imunologia , Psoríase/tratamento farmacológico , Tacrolimo/farmacologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Imiquimode/toxicidade , Imunomodulação/efeitos dos fármacos , Imunossupressores/uso terapêutico , Camundongos Endogâmicos C57BL , Psoríase/induzido quimicamente , Psoríase/patologia , Pele/metabolismo , Pele/patologia , Baço/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Tacrolimo/uso terapêutico , Células Th1/efeitos dos fármacos , Células Th17/efeitos dos fármacos
13.
Int J Mol Sci ; 21(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183071

RESUMO

Mesenchymal stem cells, also known as multipotent stromal progenitor cells, can differentiate into cells of mesodermal lineage. Gangliosides are sialic acid-conjugated glycosphingolipids that are believed to regulate cell differentiation and several signaling molecules. These molecules are localized in glycosphingolipid-enriched microdomains on the cell surface and are regulated by glycosphingolipid composition. Transforming growth factor-beta (TGF-ß) signaling plays a critical role in chondrogenic differentiation. However, the role of gangliosides in chondrogenesis is not understood. In this study, the relationship between the ganglioside GM3 and TGF-ß activation, during chondrogenic differentiation, was investigated using an aggregate culture of human synovial membrane-derived mesenchymal stem cells. We showed that the gangliosides GM3 and GD3 were expressed after the chondrogenic differentiation of hSMSC aggregates. To test whether GM3 affected the chondrogenic differentiation of hSMSC aggregates, we used GM3 treatment during chondrogenic differentiation. The results showed that the group treated with 5 µM GM3 had higher expression of chondrogenic specific markers, increased toluidine blue, and safranin O staining, and increased accumulation of glycosaminoglycans compared with the untreated group. Furthermore, GM3 treatment enhanced TGF-ß signaling via SMAD 2/3 during the chondrogenic differentiation of hSMSC aggregates. Taken together, our results suggested that GM3 may be useful in developing therapeutic agents for cell-based articular cartilage regeneration in articular cartilage disease.


Assuntos
Diferenciação Celular , Condrócitos/metabolismo , Gangliosídeo G(M3)/farmacologia , Células-Tronco Mesenquimais/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Células Cultivadas , Condrócitos/citologia , Condrogênese , Glicosaminoglicanos/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Transdução de Sinais , Proteínas Smad/metabolismo , Membrana Sinovial/citologia , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
14.
Reprod Sci ; 27(1): 278-289, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32046393

RESUMO

Ganglioside GT1b is well-known for its role in cytokine production and in activating epidermal growth factor receptor (EGFR)-mediated signaling pathways in cancer cells. However, there are no reports that clearly elucidate the role of GT1b in EGFR-mediated signaling pathways in porcine oocytes during the process of in vitro maturation (IVM). In this study, we investigated the role of GT1b in EGFR-mediated activation of the ERK1/2 pathway in porcine cumulus-oocyte complexes (COCs) at 44 h of IVM. Our data show that expression of the ST3GAL2 protein significantly increased in porcine COCs at 44 h irrespective of treatment with EGF. Meiotic maturation and mRNA levels of factors (HAS2, TNFAIP6, and PTX3) related to cumulus cell expansion significantly increased in COCs treated with 2 µM GT1b during IVM in the absence of EGF. They also increased in COCs treated with EGF/GT1b as compared to that in the other groups. Interestingly, protein levels of EGFR, phospho-EGFR, ERK1/2, and phospho-ERK1/2 dramatically increased in COCs treated with EGF/GT1b. Moreover, the rate of fertilization and the developmental competence of blastocyst were significantly higher in EGF/GT1b-treated COCs. Taken together, these results suggest that exogenous GT1b improves meiotic maturation and cumulus cell expansion in porcine COCs via activation of EGFR-mediated ERK1/2 signaling.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células do Cúmulo/efeitos dos fármacos , Receptores ErbB/metabolismo , Gangliosídeos/farmacologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Células do Cúmulo/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Oócitos/metabolismo , Suínos
15.
Int J Mol Sci ; 21(4)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079309

RESUMO

Overexpression of human epidermal growth factor receptor type 2 (HER2) is considered as a prognostic factor of breast cancer, which is positively associated with recurrence when cancer metastasizes to the lymph nodes. Here, we expressed the single variable domain on a heavy chain (VHH) form of anti-HER2 camelid single domain antibody in tobacco plants and compared its in vitro anticancer activities with the anti-HER2 full size antibody. The gene expression cassette containing anti-HER2 camelid single domain antibody VHH fused to human IgG Fc region with KDEL endoplasmic reticulum (ER) (VHH-FcK) was transferred into the tobacco plant via the Agrobacterium-mediated transformation. The transformants were screened with polymerase chain reaction and Western blot analyses. Enzyme-linked immunosorbent assay (ELISA) confirmed the binding of the purified anti-HER2 VHH-FcK to the HER2-positive breast cancer cell line, SK-BR-3. Migration assay results confirmed anticancer activity of the plant-derived anticancer camelid single chain antibody. Taken together, we confirmed the possibility of using anti-HER2 VHH-FcK as a therapeutic anticancer agent, which can be expressed and assembled and purified from a plant expression system as an alternative antibody production system.


Assuntos
Antineoplásicos/imunologia , Neoplasias da Mama/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Nicotiana/genética , Nicotiana/metabolismo , Receptor ErbB-2/imunologia , Animais , Antineoplásicos/farmacologia , Mama , Camelídeos Americanos , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoglobulina G/imunologia , Recidiva Local de Neoplasia , Planticorpos , Plantas Geneticamente Modificadas/genética , Trastuzumab
16.
Int J Mol Sci ; 21(1)2019 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-31877897

RESUMO

Gangliosides are sialic acid-containing glycosphingolipids, which are the most abundant family of glycolipids in eukaryotes. Gangliosides have been suggested to be important lipid molecules required for the control of cellular procedures, such as cell differentiation, proliferation, and signaling. GD1a is expressed in interstitial cells during ovarian maturation in mice and exogenous GD1a is important to oocyte maturation, monospermic fertilization, and embryonic development. In this context, GM1 is known to influence signaling pathways in cells and is important in sperm-oocyte interactions and sperm maturation processes, such as capacitation. GM3 is expressed in the vertebrate oocyte cytoplasm, and exogenously added GM3 induces apoptosis and DNA injury during in vitro oocyte maturation and embryogenesis. As a consequence of this, ganglioside GT1b and GM1 decrease DNA fragmentation and act as H2O2 inhibitors on germ cells and preimplantation embryos. This review describes the functional roles of gangliosides in spermatozoa, oocytes, and early embryonic development.


Assuntos
Blastocisto/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Gangliosídeo G(M3)/farmacologia , Oócitos/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Blastocisto/metabolismo , Sequência de Carboidratos , Feminino , Gangliosídeo G(M3)/química , Gangliosídeo G(M3)/metabolismo , Masculino
17.
Reproduction ; 158(6): 543-554, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31652418

RESUMO

The developmental competence of in vitro-matured oocytes is still lower than that of the in vivo-matured oocytes due to precocious meiotic resumption and inappropriate cytoplasmic maturation. Although numerous efforts have been attempted to accomplish better in vitro maturation (IVM) condition, only limited progress has been achieved. Thus, a current study was conducted to examine the effects of 6-diazo-5-oxo-l-norleucine (DON, an inhibitor of hyaluronan synthesis) during the first half period of IVM on nuclear/cytoplasmic maturation of porcine oocytes and subsequent embryonic development. Based on the observation of the nucleus pattern, metaphase II (MII) oocyte production rate in 1 µM DON group was significantly higher than other groups at 44 h of IVM. The 1 µM of DON was suggested to be optimal for porcine IVM and was therefore used for further investigation. Meiotic arrest effect of DON was maximal at 6 h of IVM, which was supported by the maintenance of significantly higher intra-oocyte cAMP level. In addition, increased pERK1/2 levels and clear rearrangement of cortical granules in membrane of MII oocytes matured with DON provided the evidence for balanced meiosis progression between nuclear and cytoplasmic maturation. Subsequently, DON significantly improved blastocyst formation rate, total cell numbers, and cellular survival in blastocysts after parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Altogether, our results showed for the first time that 1 µM DON can be used to increase the yield of developmentally competent MII oocytes by synchronizing nuclear/cytoplasmic maturation, and it subsequently improves embryo developmental competence.


Assuntos
Núcleo Celular/fisiologia , Citoplasma/fisiologia , Diazo-Oxo-Norleucina/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Meiose , Oócitos/citologia , Animais , Antibióticos Antineoplásicos/farmacologia , Núcleo Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Feminino , Fertilização in vitro/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Técnicas de Transferência Nuclear , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Gravidez , Suínos
18.
Int J Mol Sci ; 19(11)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30384504

RESUMO

Bisphenol A (BPA) is synthetic organic compound that exhibits estrogen-like properties and it induces mitochondrial superoxide production. Melatonin (Mela) protects against BPA-mediated cell damage and apoptosis. However, the antioxidative effects of Mela against BPA-induced superoxide production in porcine oocytes are still not known. In this study, we investigated the antioxidative effects of Mela against BPA-derived superoxide on oocyte maturation in pigs. To investigate the effects of the superoxide specific scavenger, Mito-TEMPO, on porcine oocyte maturation in response to BPA exposure apoptosis proteins, we treated the oocytes with Mito-TEMPO (0.1 µM) after pre-treating them with BPA (75 µM) for 22 h. As expected, the reduction in meiotic maturation and cumulus cell expansion of cumulus-oocyte-complexes (COCs) in the BPA (75 µM) treated group was recovered (p < 0.01) by treatment with Mito-TEMPO (0.1 µM). An increase in the levels of mitochondrial apoptotic proteins (AIF, cleaved Cas 3 and cleaved Parp1) in response to BPA-induced damage was also reduced by Mito-TEMPO treatment in porcine COCs. Interestingly, we confirmed the positive effects of Mela with respect to superoxide production upon BPA exposure during oocyte maturation and also confirmed the reduction in mitochondrial apoptosis in Mela (0.1 µM)-treated porcine COCs. These results provide evidence for the first time that antioxidative effects of Mela on BPA-derived superoxide improve porcine oocyte maturation.


Assuntos
Antioxidantes/farmacologia , Compostos Benzidrílicos/farmacologia , Melatonina/farmacologia , Mitocôndrias/metabolismo , Oócitos/metabolismo , Fenóis/farmacologia , Superóxidos/metabolismo , Animais , Feminino , Proteínas Mitocondriais/metabolismo , Suínos
19.
Anim Cells Syst (Seoul) ; 22(3): 157-164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30460093

RESUMO

Pig-human xenotransplantation can trigger cell-mediated immune responses. We explored the role of gangliosides in inflammation related to immune rejection in xenotransplantation. Co-culture of xenogeneic cells (pig-MSCs and RAW264.7) was used to emulate xenotransplantation conditions. MTT assay results indicated that cell viability was significantly decreased in pADMSCs co-cultured with RAW264.7 cells. GM1 and GM3 were highly expressed in pADMSCs co-cultured with RAW264.7 cells. pADMSCs co-cultured with RAW264.7 cells strongly expressed pro-inflammatory proteins such as COX-2, iNOS, p50, p65, pIκBα, and TNF-α. GM1-knockdown pADMSCs co-cultured with RAW 264.7 cells did not show significantly altered cell viability, but pro-inflammatory proteins were markedly inhibited. Co-culture of pADMSCs with RAW264.7 cells induced significant phosphorylation (p) of JNK1/2 and pERK1/2. However, pERK1/2 and pJNK1/2 were decreased and MEK1/2 and Raf1 were suppressed in GM1-knockdown pADMSCs co-cultured with RAW264.7 cells. Thus, the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways were significantly upregulated in response to increases of GM1 in co-cultured xenogeneic cells. However, the inflammatory response was suppressed in co-culture of GM1-knockdown pADMSCs with RAW264.7 cells via down-regulation of the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways. Therefore, the ganglioside GM1 appears to play a major role in the inflammatory response in xenotransplantation via the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways.

20.
Mol Med Rep ; 16(2): 987-993, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29067451

RESUMO

Glycosphingolipids are important components of the outer layer of the plasma membrane in the majority of eukaryotic cells. Specifically, gangliosides are sialic acid­containing glycosphingolipids that participate in cell­cell recognition, adhesion, proliferation, differentiation and signal transduction, and are integral components of cell surface microdomains and lipid rafts. Stem cells are defined functionally as cells that have the capacity to self­renewal and differentiate to generate various cell types. Due to different synthesis patterns and locations of gangliosides, they have been used as molecular markers of stem cells. The current review describes the presence of gangliosides in various types of mouse stem cells, including pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells) and neural stem cells, and the functional roles of gangliosides in various processes, including cell proliferation and neural differentiation. Thus, this review will aid the understanding of gangliosides patterns and functions in mouse stem cells, and outline markers for the identification of stem cells.


Assuntos
Gangliosídeos/biossíntese , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular , Membrana Celular/metabolismo , Proliferação de Células , Gangliosídeos/química , Sistema de Sinalização das MAP Quinases , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Pluripotentes/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...