Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(9): e0255323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495955

RESUMO

Sleep disorders are increasingly being characterized in modern society as contributing to a host of serious medical problems, including obesity and metabolic syndrome. Changes to the microbial community in the human gut have been reportedly associated with many of these cardiometabolic outcomes. In this study, we investigated the impact of sleep length on the gut microbiota in a large cohort of 655 participants of African descent, aged 25-45, from Ghana, South Africa (SA), Jamaica, and the United States (US). The sleep duration was self-reported via a questionnaire. Participants were classified into 3 sleep groups: short (<7hrs), normal (7-<9hrs), and long (≥9hrs). Forty-seven percent of US participants were classified as short sleepers and 88% of SA participants as long sleepers. Gut microbial composition analysis (16S rRNA gene sequencing) revealed that bacterial alpha diversity negatively correlated with sleep length (p<0.05). Furthermore, sleep length significantly contributed to the inter-individual beta diversity dissimilarity in gut microbial composition (p<0.01). Participants with both short and long-sleep durations exhibited significantly higher abundances of several taxonomic features, compared to normal sleep duration participants. The predicted relative proportion of two genes involved in the butyrate synthesis via lysine pathway were enriched in short sleep duration participants. Finally, co-occurrence relationships revealed by network analysis showed unique interactions among the short, normal and long duration sleepers. These results suggest that sleep length in humans may alter gut microbiota by driving population shifts of the whole microbiota and also specific changes in Exact Sequence Variants abundance, which may have implications for chronic inflammation associated diseases. The current findings suggest a possible relationship between disrupted sleep patterns and the composition of the gut microbiota. Prospective investigations in larger and more prolonged sleep researches and causally experimental studies are needed to confirm these findings, investigate the underlying mechanism and determine whether improving microbial homeostasis may buffer against sleep-related health decline in humans.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal/fisiologia , Transtornos do Sono-Vigília/microbiologia , Sono/fisiologia , Adulto , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Coortes , Fezes/microbiologia , Feminino , Gana , Humanos , Jamaica , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , África do Sul , Inquéritos e Questionários , Estados Unidos
2.
Nutrients ; 13(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34371950

RESUMO

Long-chain omega-3 PUFAs, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are of increasing interest because of their favorable effect on cardiometabolic risk. This study explores the association between omega 6 and 3 fatty acids intake and cardiometabolic risk in four African-origin populations spanning the epidemiological transition. Data are obtained from a cohort of 2500 adults aged 25-45 enrolled in the Modeling the Epidemiologic Transition Study (METS), from the US, Ghana, Jamaica, and the Seychelles. Dietary intake was measured using two 24 h recalls from the Nutrient Data System for Research (NDSR). The prevalence of cardiometabolic risk was analyzed by comparing the lowest and highest quartile of omega-3 (EPA+ DHA) consumption and by comparing participants who consumed a ratio of arachidonic acid (AA)/EPA + DHA ≤4:1 and >4:1. Data were analyzed using multiple variable logistic regression adjusted for age, gender, activity, calorie intake, alcohol intake, and smoking status. The lowest quartile of EPA + DHA intake is associated with cardiometabolic risk 2.16 (1.45, 3.2), inflammation 1.59 (1.17, 2.16), and obesity 2.06 (1.50, 2.82). Additionally, consuming an AA/EPA + DHA ratio of >4:1 is also associated with cardiometabolic risk 1.80 (1.24, 2.60), inflammation 1.47 (1.06, 2.03), and obesity 1.72 (1.25, 2.39). Our findings corroborate previous research supporting a beneficial role for monounsaturated fatty acids in reducing cardiometabolic risk.


Assuntos
População Negra , Fatores de Risco Cardiometabólico , Gorduras na Dieta/administração & dosagem , Ácidos Graxos Monoinsaturados/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Adulto , Fibras na Dieta/administração & dosagem , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Ácido Eicosapentaenoico/análogos & derivados , Feminino , Gana/epidemiologia , Humanos , Inflamação/epidemiologia , Jamaica/epidemiologia , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Estudos Prospectivos , Seicheles/epidemiologia , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA