Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Integr Bioinform ; 20(2)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37341516

RESUMO

Analyzing metabolic pathways in systems biology requires accurate kinetic parameters that represent the simulated in vivo processes. Simulation of the fermentation pathway in the Saccharomyces cerevisiae kinetic model help saves much time in the optimization process. Fitting the simulated model into the experimental data is categorized under the parameter estimation problem. Parameter estimation is conducted to obtain the optimal values for parameters related to the fermentation process. This step is essential because insufficient identification of model parameters can cause erroneous conclusions. The kinetic parameters cannot be measured directly. Therefore, they must be estimated from the experimental data either in vitro or in vivo. Parameter estimation is a challenging task in the biological process due to the complexity and nonlinearity of the model. Therefore, we propose the Artificial Bee Colony algorithm (ABC) to estimate the parameters in the fermentation pathway of S. cerevisiae to obtain more accurate values. A metabolite with a total of six parameters is involved in this article. The experimental results show that ABC outperforms other estimation algorithms and gives more accurate kinetic parameter values for the simulated model. Most of the estimated kinetic parameter values obtained from the proposed algorithm are the closest to the experimental data.


Assuntos
Algoritmos , Saccharomyces cerevisiae , Fermentação , Cinética , Simulação por Computador , Modelos Biológicos
2.
Front Genet ; 14: 1258083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38371307

RESUMO

Rare diseases (RDs) are rare complex genetic diseases affecting a conservative estimate of 300 million people worldwide. Recent Next-Generation Sequencing (NGS) studies are unraveling the underlying genetic heterogeneity of this group of diseases. NGS-based methods used in RDs studies have improved the diagnosis and management of RDs. Concomitantly, a suite of bioinformatics tools has been developed to sort through big data generated by NGS to understand RDs better. However, there are concerns regarding the lack of consistency among different methods, primarily linked to factors such as the lack of uniformity in input and output formats, the absence of a standardized measure for predictive accuracy, and the regularity of updates to the annotation database. Today, artificial intelligence (AI), particularly deep learning, is widely used in a variety of biological contexts, changing the healthcare system. AI has demonstrated promising capabilities in boosting variant calling precision, refining variant prediction, and enhancing the user-friendliness of electronic health record (EHR) systems in NGS-based diagnostics. This paper reviews the state of the art of AI in NGS-based genetics, and its future directions and challenges. It also compare several rare disease databases.

3.
J Integr Bioinform ; 19(3)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852123

RESUMO

Metabolic engineering has expanded in importance and employment in recent years and is now extensively applied particularly in the production of biomass from microbes. Metabolic network models have been employed extravagantly in computational processes developed to enhance metabolic production and suggest changes in organisms. The crucial issue has been the unrealistic flux distribution presented in prior work on rational modelling framework adopting Optknock and OptGene. In order to address the problem, a hybrid of Bees Algorithm and Regulatory On/Off Minimization (BAROOM) is used. By employing Escherichia coli as the model organism, the most excellent set of genes in E. coli that can be removed and advance the production of succinate can be decided. Evidences shows that BAROOM outperforms alternative strategies used to escalate in succinate production in model organisms like E. coli by selecting the best set of genes to be removed.


Assuntos
Escherichia coli , Ácido Succínico , Algoritmos , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Láctico/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas , Modelos Biológicos , Ácido Succínico/metabolismo
4.
J Integr Bioinform ; 18(3)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348418

RESUMO

Microorganisms commonly produce many high-demand industrial products like fuels, food, vitamins, and other chemicals. Microbial strains are the strains of microorganisms, which can be optimized to improve their technological properties through metabolic engineering. Metabolic engineering is the process of overcoming cellular regulation in order to achieve a desired product or to generate a new product that the host cells do not usually need to produce. The prediction of genetic manipulations such as gene knockout is part of metabolic engineering. Gene knockout can be used to optimize the microbial strains, such as to maximize the production rate of chemicals of interest. Metabolic and genetic engineering is important in producing the chemicals of interest as, without them, the product yields of many microorganisms are normally low. As a result, the aim of this paper is to propose a combination of the Bat algorithm and the minimization of metabolic adjustment (BATMOMA) to predict which genes to knock out in order to increase the succinate and lactate production rates in Escherichia coli (E. coli).


Assuntos
Escherichia coli , Redes e Vias Metabólicas , Algoritmos , Simulação por Computador , Escherichia coli/genética , Técnicas de Inativação de Genes , Engenharia Metabólica
5.
J Integr Bioinform ; 17(1)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374287

RESUMO

The metabolic network is the reconstruction of the metabolic pathway of an organism that is used to represent the interaction between enzymes and metabolites in genome level. Meanwhile, metabolic engineering is a process that modifies the metabolic network of a cell to increase the production of metabolites. However, the metabolic networks are too complex that cause problem in identifying near-optimal knockout genes/reactions for maximizing the metabolite's production. Therefore, through constraint-based modelling, various metaheuristic algorithms have been improvised to optimize the desired phenotypes. In this paper, PSOMOMA was compared with CSMOMA and ABCMOMA for maximizing the production of succinic acid in E. coli. Furthermore, the results obtained from PSOMOMA were validated with results from the wet lab experiment.


Assuntos
Escherichia coli , Modelos Biológicos , Algoritmos , Escherichia coli/genética , Engenharia Metabólica , Redes e Vias Metabólicas , Ácido Succínico
6.
Interdiscip Sci ; 11(1): 33-44, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30758766

RESUMO

In recent years, metabolic engineering has gained central attention in numerous fields of science because of its capability to manipulate metabolic pathways in enhancing the expression of target phenotypes. Due to this, many computational approaches that perform genetic manipulation have been developed in the computational biology field. In metabolic engineering, conventional methods have been utilized to upgrade the generation of lactate and succinate in E. coli, although the yields produced are usually way below their theoretical maxima. To overcome the drawbacks  of such conventional methods, development of hybrid algorithm is introduced to obtain an optimal solution by proposing a gene knockout strategy in E. coli which is able to improve the production of lactate and succinate. The objective function of the hybrid algorithm is optimized using a swarm intelligence optimization algorithm and a Simple Constrained Artificial Bee Colony (SCABC) algorithm. The results maximize the production of lactate and succinate by resembling the gene knockout in E. coli. The Flux Balance Analysis (FBA) is integrated in a hybrid algorithm to evaluate the growth rate of E. coli as well as the productions of lactate and succinate. This results in the identification of a gene knockout list that contributes to maximizing the production of lactate and succinate in E. coli.


Assuntos
Escherichia coli/genética , Técnicas de Inativação de Genes/métodos , Ácido Láctico/metabolismo , Redes e Vias Metabólicas/fisiologia , Ácido Succínico/metabolismo , Algoritmos , Simulação por Computador , Modelos Biológicos
7.
Biomed Res Int ; 2015: 124537, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874200

RESUMO

Microbial strain optimisation for the overproduction of a desired phenotype has been a popular topic in recent years. Gene knockout is a genetic engineering technique that can modify the metabolism of microbial cells to obtain desirable phenotypes. Optimisation algorithms have been developed to identify the effects of gene knockout. However, the complexities of metabolic networks have made the process of identifying the effects of genetic modification on desirable phenotypes challenging. Furthermore, a vast number of reactions in cellular metabolism often lead to a combinatorial problem in obtaining optimal gene knockout. The computational time increases exponentially as the size of the problem increases. This work reports an extension of Bees Hill Flux Balance Analysis (BHFBA) to identify optimal gene knockouts to maximise the production yield of desired phenotypes while sustaining the growth rate. This proposed method functions by integrating OptKnock into BHFBA for validating the results automatically. The results show that the extension of BHFBA is suitable, reliable, and applicable in predicting gene knockout. Through several experiments conducted on Escherichia coli, Bacillus subtilis, and Clostridium thermocellum as model organisms, extension of BHFBA has shown better performance in terms of computational time, stability, growth rate, and production yield of desired phenotypes.


Assuntos
Bacillus subtilis/genética , Clostridium/genética , Escherichia coli/genética , Técnicas de Silenciamento de Genes , Genes Bacterianos/fisiologia , Modelos Genéticos
8.
J Biosci Bioeng ; 119(3): 363-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25216804

RESUMO

Metabolic engineering is a research field that focuses on the design of models for metabolism, and uses computational procedures to suggest genetic manipulation. It aims to improve the yield of particular chemical or biochemical products. Several traditional metabolic engineering methods are commonly used to increase the production of a desired target, but the products are always far below their theoretical maximums. Using numeral optimisation algorithms to identify gene knockouts may stall at a local minimum in a multivariable function. This paper proposes a hybrid of the artificial bee colony (ABC) algorithm and the minimisation of metabolic adjustment (MOMA) to predict an optimal set of solutions in order to optimise the production rate of succinate and lactate. The dataset used in this work was from the iJO1366 Escherichia coli metabolic network. The experimental results include the production rate, growth rate and a list of knockout genes. From the comparative analysis, ABCMOMA produced better results compared to previous works, showing potential for solving genetic engineering problems.


Assuntos
Algoritmos , Abelhas/metabolismo , Escherichia coli/metabolismo , Ácido Láctico/biossíntese , Engenharia Metabólica , Modelos Biológicos , Ácido Succínico/metabolismo , Animais , Conjuntos de Dados como Assunto , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Ácido Láctico/metabolismo , Redes e Vias Metabólicas/genética
9.
Recent Pat Biotechnol ; 9(3): 176-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27185502

RESUMO

BACKGROUND: Predicting the effects of genetic modification is difficult due to the complexity of metabolic net- works. Various gene knockout strategies have been utilised to deactivate specific genes in order to determine the effects of these genes on the function of microbes. Deactivation of genes can lead to deletion of certain proteins and functions. Through these strategies, the associated function of a deleted gene can be identified from the metabolic networks. METHODS: The main aim of this paper is to review the available techniques in gene knockout strategies for microbial cells. The review is done in terms of their methodology, recent applications in microbial cells. In addition, the advantages and disadvantages of the techniques are compared and discuss and the related patents are also listed as well. RESULTS: Traditionally, gene knockout is done through wet lab (in vivo) techniques, which were conducted through laboratory experiments. However, these techniques are costly and time consuming. Hence, various dry lab (in silico) techniques, where are conducted using computational approaches, have been developed to surmount these problem. CONCLUSION: The development of numerous techniques for gene knockout in microbial cells has brought many advancements in the study of gene functions. Based on the literatures, we found that the gene knockout strategies currently used are sensibly implemented with regard to their benefits.


Assuntos
Bactérias/genética , Técnicas de Inativação de Genes/métodos , Biologia Computacional/métodos , Simulação por Computador , Técnicas In Vitro/métodos , Patentes como Assunto
10.
PLoS One ; 9(7): e102744, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25047076

RESUMO

Microbial strains optimization for the overproduction of desired phenotype has been a popular topic in recent years. The strains can be optimized through several techniques in the field of genetic engineering. Gene knockout is a genetic engineering technique that can engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, the complexities of the metabolic networks have made the process to identify the effects of genetic modification on the desirable phenotypes challenging. Furthermore, a vast number of reactions in cellular metabolism often lead to the combinatorial problem in obtaining optimal gene deletion strategy. Basically, the size of a genome-scale metabolic model is usually large. As the size of the problem increases, the computation time increases exponentially. In this paper, we propose Differential Bees Flux Balance Analysis (DBFBA) with OptKnock to identify optimal gene knockout strategies for maximizing the production yield of desired phenotypes while sustaining the growth rate. This proposed method functions by improving the performance of a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) by hybridizing Differential Evolution (DE) algorithm into neighborhood searching strategy of BAFBA. In addition, DBFBA is integrated with OptKnock to validate the results for improving the reliability the work. Through several experiments conducted on Escherichia coli, Bacillus subtilis, and Clostridium thermocellum as the model organisms, DBFBA has shown a better performance in terms of computational time, stability, growth rate, and production yield of desired phenotypes compared to the methods used in previous works.


Assuntos
Biologia Computacional/métodos , Técnicas de Inativação de Genes/métodos , Modelos Biológicos , Algoritmos , Bacillus subtilis/genética , Clostridium thermocellum/genética , Simulação por Computador , Escherichia coli/genética , Fenótipo , Reprodutibilidade dos Testes
11.
Malays J Med Sci ; 21(2): 20-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24876803

RESUMO

BACKGROUND: Gene expression data often contain missing expression values. Therefore, several imputation methods have been applied to solve the missing values, which include k-nearest neighbour (kNN), local least squares (LLS), and Bayesian principal component analysis (BPCA). However, the effects of these imputation methods on the modelling of gene regulatory networks from gene expression data have rarely been investigated and analysed using a dynamic Bayesian network (DBN). METHODS: In the present study, we separately imputed datasets of the Escherichia coli S.O.S. DNA repair pathway and the Saccharomyces cerevisiae cell cycle pathway with kNN, LLS, and BPCA, and subsequently used these to generate gene regulatory networks (GRNs) using a discrete DBN. We made comparisons on the basis of previous studies in order to select the gene network with the least error. RESULTS: We found that BPCA and LLS performed better on larger networks (based on the S. cerevisiae dataset), whereas kNN performed better on smaller networks (based on the E. coli dataset). CONCLUSION: The results suggest that the performance of each imputation method is dependent on the size of the dataset, and this subsequently affects the modelling of the resultant GRNs using a DBN. In addition, on the basis of these results, a DBN has the capacity to discover potential edges, as well as display interactions, between genes.

12.
Comput Biol Med ; 49: 74-82, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24763079

RESUMO

This paper presents a study on gene knockout strategies to identify candidate genes to be knocked out for improving the production of succinic acid in Escherichia coli. Succinic acid is widely used as a precursor for many chemicals, for example production of antibiotics, therapeutic proteins and food. However, the chemical syntheses of succinic acid using the traditional methods usually result in the production that is far below their theoretical maximums. In silico gene knockout strategies are commonly implemented to delete the gene in E. coli to overcome this problem. In this paper, a hybrid of Ant Colony Optimization (ACO) and Minimization of Metabolic Adjustment (MoMA) is proposed to identify gene knockout strategies to improve the production of succinic acid in E. coli. As a result, the hybrid algorithm generated a list of knockout genes, succinic acid production rate and growth rate for E. coli after gene knockout. The results of the hybrid algorithm were compared with the previous methods, OptKnock and MOMAKnock. It was found that the hybrid algorithm performed better than OptKnock and MOMAKnock in terms of the production rate. The information from the results produced from the hybrid algorithm can be used in wet laboratory experiments to increase the production of succinic acid in E. coli.


Assuntos
Escherichia coli/metabolismo , Modelos Biológicos , Ácido Succínico/metabolismo , Simulação por Computador , Escherichia coli/genética , Escherichia coli/fisiologia , Técnicas de Inativação de Genes , Ácido Succínico/análise
13.
Bioprocess Biosyst Eng ; 37(3): 521-32, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23892659

RESUMO

Microbial strain optimization focuses on improving technological properties of the strain of microorganisms. However, the complexities of the metabolic networks, which lead to data ambiguity, often cause genetic modification on the desirable phenotypes difficult to predict. Furthermore, vast number of reactions in cellular metabolism lead to the combinatorial problem in obtaining optimal gene deletion strategy. Consequently, the computation time increases exponentially with the increase in the size of the problem. Hence, we propose an extension of a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) by integrating OptKnock into BAFBA to validate the result. This paper presents a number of computational experiments to test on the performance and capability of BAFBA. Escherichia coli, Bacillus subtilis and Clostridium thermocellum are the model organisms in this paper. Also included is the identification of potential reactions to improve the production of succinic acid, lactic acid and ethanol, plus the discussion on the changes in the flux distribution of the predicted mutants. BAFBA shows potential in suggesting the non-intuitive gene knockout strategies and a low variability among the several runs. The results show that BAFBA is suitable, reliable and applicable in predicting optimal gene knockout strategy.


Assuntos
Algoritmos , Bacillus subtilis/metabolismo , Clostridium thermocellum/metabolismo , Escherichia coli/metabolismo , Bacillus subtilis/genética , Clostridium thermocellum/genética , Simulação por Computador , Escherichia coli/genética , Genes Bacterianos
14.
Int J Data Min Bioinform ; 10(2): 225-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25796740

RESUMO

The development of microbial production system has become popular in recent years as microbial hosts offer a number of unique advantages for both native and heterologous small-molecules. However, the main drawback is low yield or productivity of the desired products. Optimisation algorithms are implemented in previous works to identify the effects of gene knockout. Nevertheless, the previous works faced performance issue. Thus, a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) is proposed in this paper to improve the performance in predicting optimal sets of gene deletion for maximising the growth rate and production yield of certain metabolite. This paper involves two datasets which are E. coli and S. cerevisiae. The list of knockout genes, growth rate and production yield after the deletion are the results from the experiments. BAFBA presents better results compared to the other methods and the identified list may be useful in solving genetic engineering problems.


Assuntos
Algoritmos , Bactérias/genética , Proteínas de Bactérias/genética , Melhoramento Genético/métodos , Análise do Fluxo Metabólico/métodos , Modelos Biológicos , Transdução de Sinais/genética , Animais , Abelhas , Simulação por Computador , Técnicas de Inativação de Genes/métodos , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...