Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virology ; 592: 109998, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38301447

RESUMO

Plant viruses are responsible for nearly 47 % of all crop losses brought by plant diseases, which have a considerable negative impact on agricultural output. Nanoparticles have the potential to greatly raise agricultural output due to their wonderful applications in the fields of highly sensitive biomolecular detection, disease diagnostics, antimicrobials, and therapeutic compounds. The application of nanotechnology in plant virology is known as nanophytovirology, and it involves biostimulation, drug transport, genetic manipulation, therapeutic agents, and induction of plant defenses. The inactivation and denaturation of capsid protein, nucleic acids (RNA or DNA), and other protein constituents are involved in the underlying mechanism. To determine the precise mechanism by which nanoparticles affect viral mobility, reproduction, encapsidation, and transmission, more research is however required. Nanoparticles can be used to precisely detect plant viruses using nanobiosensors or as biostimulants. The varieties of nanoparticles employed in plant virus control and their methods of virus suppression are highlighted in this review.


Assuntos
Nanopartículas , Vírus de Plantas , Vírus de Plantas/genética , Proteínas do Capsídeo/genética , RNA Viral/genética , Doenças das Plantas/prevenção & controle
2.
J Med Microbiol ; 72(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37378642

RESUMO

Human monkeypox virus (hMpoxV) is of zoonotic origin and is closely related to the once-dreaded smallpox virus. It is largely endemic to the African continent but has moved out of the endemic regions as sporadic clusters in the past 20 years, raising concerns worldwide. Human Mpox is characterized by a mild to severe, self-limiting infection, with mortality ranging from less than 1% to up to 10% during different outbreaks caused by different clades of MpoxV. Bushmeat hunting is one of the primary reasons for its transmission from animals to humans. Various international and national health regulatory bodies are closely monitoring the disease and have laid down guidelines to manage and prevent hMpox cases. Emergency Use Status has been granted to Tecovirimat and Brincidofovir to treat severe cases and vaccination with the smallpox vaccine is recommended for high-risk group individuals. Strategies to repurpose and discover novel therapeutics and vaccines to control the outbreak are being researched. The current Mpox outbreak that has mainly affected men as approximately 96% of all cases are reported in men, is probably the result of a complex intersection of various factors. This necessitates a strong One Health response coordination involving human, animal and environmental health institutions. This review is an attempt to provide an all-inclusive overview of the biology, history, epidemiology, pathophysiology, diagnosis and management of hMpox in context to the recent 2022-2023 multi-country outbreak which is termed by WHO a 'Public Health Emergency of International Concern (PHEIC)'.


Assuntos
Mpox , Animais , Masculino , Humanos , Mpox/epidemiologia , Mpox/prevenção & controle , Surtos de Doenças , Saúde Pública , Antígenos Virais , Benzamidas
3.
Front Microbiol ; 9: 2618, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30467495

RESUMO

Plasmid curing is the process of obviating the plasmid encoded functions such as antibiotic resistance, virulence, degradation of aromatic compounds, etc. in bacteria. Several plasmid curing agents have been reported in literature, however, no plasmid curing agent can eliminate all plasmids from different hosts. Hence, there is always a need for novel plasmid curing agents that can be effectively used for reversal of plasmid encoded functions such as virulence, antibiotic resistance, etc. In the present study, an active principle responsible for the plasmid curing activity was purified from roots of Plumbago zeylanica by bioassay guided fractionation and identified as 2-hydroxy-1,4-naphthoquinone (lawsone), on the basis of spectral and analytical data such as NMR, GCMS, FTIR. Plasmid curing activity of lawsone was observed against reference as well as wild plasmids (pBR322, pRK2013, R136, pUPI281, and pUPI282) residing in a range of hosts. Curing of plasmid was confirmed by agarose gel electrophoresis. MICs of antibiotics against A. baumannii A24 (pUPI281) and E. coli (pRK2013) decreased significantly in presence of lawsone suggesting synergy between lawsone and antibiotics. Lawsone also inhibited transfer of plasmid pRK2013 to E. coli either by transformation or conjugation. Viability assays (MTT) revealed that lawsone was not toxic to mammalian cells. Thus, the present investigation has revealed lawsone as an effective plasmid curing agent capable of suppressing development and spread of antibiotic resistance. Further, lawsone has important application in basic research to identify phenotypes encoded by the plasmids in plasmid curing experiments. To the best of our knowledge this is the first report of plasmid curing activity of lawsone isolated from roots of P. zeylanica.

4.
Int J Nanomedicine ; 11: 1889-97, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27217751

RESUMO

PURPOSE: Multi- and extensively drug-resistant tuberculosis (TB) is a global threat to human health. It requires immediate action to seek new antitubercular compounds and devise alternate strategies. Nanomaterials, in the present scenario, have opened new avenues in medicine, diagnosis, and therapeutics. In view of this, the current study aims to determine the efficacy of phytogenic metal nanoparticles to inhibit mycobacteria. METHODS: Silver (AgNPs), gold (AuNPs), and gold-silver bimetallic (Au-AgNPs) nanoparticles synthesized from medicinal plants, such as Barleria prionitis, Plumbago zeylanica, and Syzygium cumini, were tested against Mycobacterium tuberculosis and M. bovis BCG. In vitro and ex vivo macrophage infection model assays were designed to determine minimum inhibitory concentration (MIC) and half maximal inhibitory concentration of nanoparticles. Microscopic analyses were carried out to demonstrate intracellular uptake of nanoparticles in macrophages. Besides this, biocompatibility, specificity, and selectivity of nanoparticles were also established with respect to human cell lines. RESULTS: Au-AgNPs exhibited highest antitubercular activity, with MIC of <2.56 µg/mL, followed by AgNPs. AuNPs did not show such activity at concentrations of up to 100 µg/mL. In vitro and ex vivo macrophage infection model assays revealed the inhibition of both active and dormant stage mycobacteria on exposure to Au-AgNPs. These nanoparticles were capable of entering macrophage cells and exhibited up to 45% cytotoxicity at 30 µg/mL (ten times MIC concentration) after 48 hours. Among these, Au-AgNPs synthesized from S. cumini were found to be more specific toward mycobacteria, with their selectivity index in the range of 94-108. CONCLUSION: This is the first study to report the antimycobacterial activity of AuNPs, AgNPs, and Au-AgNPs synthesized from medicinal plants. Among these, Au-AgNPs from S. cumini showed profound efficiency, specificity, and selectivity to kill mycobacteria. These should be investigated further to develop novel TB nanoantibiotics.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Nanopartículas Metálicas/química , Plantas Medicinais/química , Acanthaceae/química , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Ouro/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Testes de Sensibilidade Microbiana , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Plumbaginaceae/química , Prata/farmacologia
5.
Materials (Basel) ; 9(5)2016 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28773507

RESUMO

Biofilms are the cause of 80% of microbial infections. Acinetobacter species have emerged as multi- and pan-drug-resistant bacteria and pose a great threat to human health. These act as nosocomial pathogens and form excellent biofilms, both on biotic and abiotic surfaces, leading to severe infections and diseases. Various methods have been developed for treatment and control of Acinetobacter biofilm including photodynamic therapy, radioimmunotherapy, prophylactic vaccines and antimicrobial peptides. Nanotechnology, in the present scenario, offers a promising alternative. Nanomaterials possess unique properties, and multiple bactericidal mechanisms render them more effective than conventional drugs. This review intends to provide an overview of Acinetobacter biofilm and the significant role of various nanoparticles as anti-biofouling agents, surface-coating materials and drug-delivery vehicles for biofilm control and treatment of Acinetobacter infections.

6.
Microb Pathog ; 83-84: 12-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25940676

RESUMO

Acinetobacter radioresistens is an important member of genus Acinetobacter from a clinical point of view. In the present study, we report that a clinical isolate of A. radioresistens releases outer membrane vesicles (OMVs) under in vitro growth conditions. OMVs were released in distinctive size ranges with diameters from 10 to 150 nm as measured by the dynamic light scattering (DLS) technique. Additionally, proteins associated with or present into OMVs were identified using LC-ESI-MS/MS. A total of 71 proteins derived from cytosolic, cell membrane, periplasmic space, outer membrane (OM), extracellular and undetermined locations were found in OMVs. The initial characterization of the OMV proteome revealed a correlation of some proteins to biofilm, quorum sensing, oxidative stress tolerance, and cytotoxicity functions. Thus, the OMVs of A. radioresistens are suggested to play a role in biofilm augmentation and virulence possibly by inducing apoptosis.


Assuntos
Acinetobacter/patogenicidade , Proteínas da Membrana Bacteriana Externa/análise , Membrana Celular/química , Proteoma/análise , Vesículas Secretórias/química , Fatores de Virulência/análise , Membrana Celular/metabolismo , Cromatografia Líquida , Vesículas Secretórias/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
7.
Appl Environ Microbiol ; 80(11): 3469-83, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24657872

RESUMO

Outer membrane vesicles (OMVs) are continually released from a range of bacterial species. Numerous functions of OMVs, including the facilitation of horizontal gene transfer (HGT) processes, have been proposed. In this study, we investigated whether OMVs contribute to the transfer of plasmids between bacterial cells and species using Gram-negative Acinetobacter baylyi as a model system. OMVs were extracted from bacterial cultures and tested for the ability to vector gene transfer into populations of Escherichia coli and A. baylyi, including naturally transformation-deficient mutants of A. baylyi. Anti-double-stranded DNA (anti-dsDNA) antibodies were used to determine the movement of DNA into OMVs. We also determined how stress affected the level of vesiculation and the amount of DNA in vesicles. OMVs were further characterized by measuring particle size distribution (PSD) and zeta potential. Transmission electron microscopy (TEM) and immunogold labeling were performed using anti-fluorescein isothiocyanate (anti-FITC)-conjugated antibodies and anti-dsDNA antibodies to track the movement of FITC-labeled and DNA-containing OMVs. Exposure to OMVs isolated from plasmid-containing donor cells resulted in HGT to A. baylyi and E. coli at transfer frequencies ranging from 10(-6) to 10(-8), with transfer efficiencies of approximately 10(3) and 10(2) per µg of vesicular DNA, respectively. Antibiotic stress was shown to affect the DNA content of OMVs as well as their hydrodynamic diameter and zeta potential. Morphological observations suggest that OMVs from A. baylyi interact with recipient cells in different ways, depending on the recipient species. Interestingly, the PSD measurements suggest that distinct size ranges of OMVs are released from A. baylyi.


Assuntos
Acinetobacter/genética , DNA Bacteriano/análise , Transferência Genética Horizontal , Vesículas Secretórias/química , Transformação Bacteriana , DNA Bacteriano/genética , Escherichia coli/genética , Plasmídeos/análise
8.
Int J Nanomedicine ; 8: 4277-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24235826

RESUMO

BACKGROUND: The development of nontoxic methods of synthesizing nanoparticles is a major step in nanotechnology to allow their application in nanomedicine. The present study aims to biosynthesize silver nanoparticles (AgNPs) using a cell-free extract of Acinetobacter spp. and evaluate their antibacterial activity. METHODS: Eighteen strains of Acinetobacter were screened for AgNP synthesis. AgNPs were characterized using various techniques. Reaction parameters were optimized, and their effect on the morphology of AgNPs was studied. The synergistic potential of AgNPs on 14 antibiotics against seven pathogens was determined by disc-diffusion, broth-microdilution, and minimum bactericidal concentration assays. The efficacy of AgNPs was evaluated as per the minimum inhibitory concentration (MIC) breakpoints of the Clinical and Laboratory Standards Institute (CLSI) guidelines. RESULTS: Only A. calcoaceticus LRVP54 produced AgNPs within 24 hours. Monodisperse spherical nanoparticles of 8-12 nm were obtained with 0.7 mM silver nitrate at 70°C. During optimization, a blue-shift in ultraviolet-visible spectra was seen. X-ray diffraction data and lattice fringes (d =0.23 nm) observed under high-resolution transmission electron microscope confirmed the crystallinity of AgNPs. These AgNPs were found to be more effective against Gram-negative compared with Gram-positive microorganisms. Overall, AgNPs showed the highest synergy with vancomycin in the disc-diffusion assay. For Enterobacter aerogenes, a 3.8-fold increase in inhibition zone area was observed after the addition of AgNPs with vancomycin. Reduction in MIC and minimum bactericidal concentration was observed on exposure of AgNPs with antibiotics. Interestingly, multidrug-resistant A. baumannii was highly sensitized in the presence of AgNPs and became susceptible to antibiotics except cephalosporins. Similarly, the vancomycin-resistant strain of Streptococcus mutans was also found to be susceptible to antibiotic treatment when AgNPs were added. These biogenic AgNPs showed significant synergistic activity on the ß-lactam class of antibiotics. CONCLUSION: This is the first report of synthesis of AgNPs using A. calcoaceticus LRVP54 and their significant synergistic activity with antibiotics resulting in increased susceptibility of multidrug-resistant bacteria evaluated as per MIC breakpoints of the CLSI standard.


Assuntos
Acinetobacter calcoaceticus/metabolismo , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Prata/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...