Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6190, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261416

RESUMO

Plant-parasitic nematodes are a major threat to crop production in all agricultural systems. The scarcity of classical resistance genes highlights a pressing need to find new ways to develop nematode-resistant germplasm. Here, we sequence and assemble a high-quality phased genome of the model cyst nematode Heterodera schachtii to provide a platform for the first system-wide dual analysis of host and parasite gene expression over time, covering all major parasitism stages. Analysis of the hologenome of the plant-nematode infection site identified metabolic pathways that were incomplete in the parasite but complemented by the host. Using a combination of bioinformatic, genetic, and biochemical approaches, we show that a highly atypical completion of vitamin B5 biosynthesis by the parasitic animal, putatively enabled by a horizontal gene transfer from a bacterium, is required for full pathogenicity. Knockout of either plant-encoded or now nematode-encoded steps in the pathway significantly reduces parasitic success. Our experiments establish a reference for cyst nematodes, further our understanding of the evolution of plant-parasitism by nematodes, and show that congruent differential expression of metabolic pathways in the infection hologenome represents a new way to find nematode susceptibility genes. The approach identifies genome-editing-amenable targets for future development of nematode-resistant crops.


Assuntos
Cistos , Parasitos , Tylenchida , Animais , Ácido Pantotênico , Transcriptoma
2.
Mol Plant Pathol ; 23(7): 1048-1059, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35352464

RESUMO

Cyst nematodes (CNs) are an important group of root-infecting sedentary endoparasites that severely damage many crop plants worldwide. An infective CN juvenile enters the host's roots and migrates towards the vascular cylinder, where it induces the formation of syncytial feeding cells, which nourish the CN throughout its parasitic stages. Here, we examined the role of glutathione (l-γ-glutamyl-l-cysteinyl-glycine) in Arabidopsis thaliana on infection with the CN Heterodera schachtii. Arabidopsis lines with mutations pad2, cad2, or zir1 in the glutamate-cysteine ligase (GSH1) gene, which encodes the first enzyme in the glutathione biosynthetic pathway, displayed enhanced CN susceptibility, but susceptibility was reduced for rax1, another GSH1 allele. Biochemical analysis revealed differentially altered thiol levels in these mutants that was independent of nematode infection. All glutathione-deficient mutants exhibited impaired activation of defence marker genes as well as genes for biosynthesis of the antimicrobial compound camalexin early in infection. Further analysis revealed a link between glutathione-mediated plant resistance to CN infection and the production of camalexin on nematode infection. These results suggest that glutathione levels affect plant resistance to CN by fine-tuning the balance between the cellular redox environment and the production of compounds related to defence against infection.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cistos , Tylenchoidea , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cistos/metabolismo , Regulação da Expressão Gênica de Plantas , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Doenças das Plantas/genética , Raízes de Plantas/parasitologia , Fatores de Transcrição/metabolismo , Tylenchoidea/fisiologia
3.
Front Plant Sci ; 12: 767772, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721494

RESUMO

Root hair formation in Arabidopsis thaliana is a well-established model system for epidermal patterning and morphogenesis in plants. Over the last decades, many underlying regulatory genes and well-established networks have been identified by thorough genetic and molecular analysis. In this study, we used a forward genetic approach to identify genes involved in root hair development in Arabis alpina, a related crucifer species that diverged from A. thaliana approximately 26-40 million years ago. We found all root hair mutant classes known in A. thaliana and identified orthologous regulatory genes by whole-genome or candidate gene sequencing. Our findings indicate that the gene-phenotype relationships regulating root hair development are largely conserved between A. thaliana and A. alpina. Concordantly, a detailed analysis of one mutant with multiple hairs originating from one cell suggested that a mutation in the SUPERCENTIPEDE1 (SCN1) gene is causal for the phenotype and that AaSCN1 is fully functional in A. thaliana. Interestingly, we also found differences in the regulation of root hair differentiation and morphogenesis between the species, and a subset of root hair mutants could not be explained by mutations in orthologs of known genes from A. thaliana. This analysis provides insight into the conservation and divergence of root hair regulation in the Brassicaceae.

4.
New Phytol ; 232(1): 318-331, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34133755

RESUMO

Reactive oxygen species (ROS) generated in response to infections often activate immune responses in eukaryotes including plants. In plants, ROS are primarily produced by plasma membrane-bound NADPH oxidases called respiratory burst oxidase homologue (Rboh). Surprisingly, Rbohs can also promote the infection of plants by certain pathogens, including plant parasitic cyst nematodes. The Arabidopsis genome contains 10 Rboh genes (RbohA-RbohJ). Previously, we showed that cyst nematode infection causes a localised ROS burst in roots, mediated primarily by RbohD and RbohF. We also found that plants deficient in RbohD and RbohF (rbohD/F) exhibit strongly decreased susceptibility to cyst nematodes, suggesting that Rboh-mediated ROS plays a role in promoting infection. However, little information is known of the mechanism by which Rbohs promote cyst nematode infection. Here, using detailed genetic and biochemical analyses, we identified WALLS ARE THIN1 (WAT1), an auxin transporter, as a downstream target of Rboh-mediated ROS during parasitic infections. We found that WAT1 is required to modulate the host's indole metabolism, including indole-3-acetic acid levels, in infected cells and that this reprogramming is necessary for successful establishment of the parasite. In conclusion, this work clarifies a unique mechanism that enables cyst nematodes to use the host's ROS for their own benefit.


Assuntos
Proteínas de Arabidopsis , Cistos , Nematoides , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Indóis , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Nematoides/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
J Exp Bot ; 70(12): 3197-3209, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31071215

RESUMO

A protein complex consisting of a MYB, basic Helix-Loop-Helix, and a WDR protein, the MBW complex, regulates five traits, namely the production of anthocyanidin, proanthocyanidin, and seed-coat mucilage, and the development of trichomes and root hairs. For complexes involved in trichome and root hair development it has been shown that the interaction of two MBW proteins can be counteracted by the respective third protein (called competitive complex formation). We examined competitive complex formation for selected MBW proteins from Arabidopsis thaliana, Arabis alpina, Gossypium hirsutum, Petunia hybrida, and Zea mays. Quantitative analyses of the competitive binding of MYBs and WDRs to bHLHs were done by pull-down assays using ProtA- and luciferase-tagged proteins expressed in human HEC cells. We found that some bHLHs show competitive complex formation whilst others do not. Competitive complex formation strongly correlated with a phylogenetic tree constructed with the bHLH proteins under investigation, suggesting a functional relevance. We demonstrate that this different behavior can be explained by changes in one amino acid and that this position is functionally relevant in trichome development but not in anthocyanidin regulation.


Assuntos
Evolução Molecular , Magnoliopsida/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabis/genética , Arabis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Gossypium/genética , Gossypium/metabolismo , Magnoliopsida/metabolismo , Petunia/genética , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética , Zea mays/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(24): 12078-12083, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31123146

RESUMO

The genetic and molecular analysis of trichome development in Arabidopsis thaliana has generated a detailed knowledge about the underlying regulatory genes and networks. However, how rapidly these mechanisms diverge during evolution is unknown. To address this problem, we used an unbiased forward genetic approach to identify most genes involved in trichome development in the related crucifer species Arabisalpina In general, we found most trichome mutant classes known in A. thaliana We identified orthologous genes of the relevant A. thaliana genes by sequence similarity and synteny and sequenced candidate genes in the A. alpina mutants. While in most cases we found a highly similar gene-phenotype relationship as known from Arabidopsis, there were also striking differences in the regulation of trichome patterning, differentiation, and morphogenesis. Our analysis of trichome patterning suggests that the formation of two classes of trichomes is regulated differentially by the homeodomain transcription factor AaGL2 Moreover, we show that overexpression of the GL3 basic helix-loop-helix transcription factor in A. alpina leads to the opposite phenotype as described in A. thaliana Mathematical modeling helps to explain how this nonintuitive behavior can be explained by different ratios of GL3 and GL1 in the two species.


Assuntos
Arabis/genética , Tricomas/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas/genética , Morfogênese/genética , Mutação/genética , Fenótipo , Fatores de Transcrição/genética
7.
Mol Plant Pathol ; 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29470862

RESUMO

Sedentary plant-parasitic cyst nematodes are obligate biotrophs that infect the roots of their host plant. Their parasitism is based on the modification of root cells to form a hypermetabolic syncytium from which the nematodes draw their nutrients. The aim of this study was to identify nematode susceptibility genes in Arabidopsis thaliana and to characterize their roles in supporting the parasitism of Heterodera schachtii. By selecting genes that were most strongly upregulated in response to cyst nematode infection, we identified HIPP27 (HEAVY METAL-ASSOCIATED ISOPRENYLATED PLANT PROTEIN 27) as a host susceptibility factor required for beet cyst nematode infection and development. Detailed expression analysis revealed that HIPP27 is a cytoplasmic protein and that HIPP27 is strongly expressed in leaves, young roots and nematode-induced syncytia. Loss-of-function Arabidopsis hipp27 mutants exhibited severely reduced susceptibility to H. schachtii and abnormal starch accumulation in syncytial and peridermal plastids. Our results suggest that HIPP27 is a susceptibility gene in Arabidopsis whose loss of function reduces plant susceptibility to cyst nematode infection without increasing the susceptibility to other pathogens or negatively affecting the plant phenotype.

8.
PLoS Pathog ; 13(4): e1006284, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28406987

RESUMO

Plant-parasitic nematodes are destructive pests causing losses of billions of dollars annually. An effective plant defence against pathogens relies on the recognition of pathogen-associated molecular patterns (PAMPs) by surface-localised receptors leading to the activation of PAMP-triggered immunity (PTI). Extensive studies have been conducted to characterise the role of PTI in various models of plant-pathogen interactions. However, far less is known about the role of PTI in roots in general and in plant-nematode interactions in particular. Here we show that nematode-derived proteinaceous elicitor/s is/are capable of inducing PTI in Arabidopsis in a manner dependent on the common immune co-receptor BAK1. Consistent with the role played by BAK1, we identified a leucine-rich repeat receptor-like kinase, termed NILR1 that is specifically regulated upon infection by nematodes. We show that NILR1 is essential for PTI responses initiated by nematodes and nilr1 loss-of-function mutants are hypersusceptible to a broad category of nematodes. To our knowledge, NILR1 is the first example of an immune receptor that is involved in induction of basal immunity (PTI) in plants or in animals in response to nematodes. Manipulation of NILR1 will provide new options for nematode control in crop plants in future.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Interações Hospedeiro-Parasita , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/metabolismo , Tylenchoidea/fisiologia , Animais , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Raízes de Plantas/citologia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
9.
BMC Plant Biol ; 14: 16, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24406039

RESUMO

BACKGROUND: In Arabidopsis thaliana (A. thaliana) the WD40 protein TRANSPARENT TESTA GLABRA1 (TTG1) controls five traits relevant for the adaptation of plants to environmental changes including the production of proanthocyanidin, anthocyanidin, seed coat mucilage, trichomes and root hairs. The analysis of different Brassicaceae species suggests that the function of TTG1 is conserved within the family. RESULTS: In this work, we studied the function of TTG1 in Arabis alpina (A. alpina). A comparison of wild type and two Aattg1 alleles revealed that AaTTG1 is involved in the regulation of all five traits. A detailed analysis of the five traits showed striking phenotypic differences between A. alpina and A. thaliana such that trichome formation occurs also at later stages of leaf development and that root hairs form at non-root hair positions. CONCLUSIONS: The evolutionary conservation of the regulation of the five traits by TTG1 on the one hand and the striking phenotypic differences make A. alpina a very interesting genetic model system to study the evolution of TTG1-dependent gene regulatory networks at a functional level.


Assuntos
Arabis/metabolismo , Proteínas de Plantas/metabolismo , Arabis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...