Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38392842

RESUMO

Protein synthesis has been a very rich target for developing drugs to control prokaryotic and eukaryotic pathogens. Despite the development of new drug formulations, treating human cutaneous and visceral Leishmaniasis still needs significant improvements due to the considerable side effects and low adherence associated with the current treatment regimen. In this work, we show that the di-substituted urea-derived compounds I-17 and 3m are effective in inhibiting the promastigote growth of different Leishmania species and reducing the macrophage intracellular load of amastigotes of the Leishmania (L.) amazonensis and L. major species, in addition to exhibiting low macrophage cytotoxicity. We also show a potential immunomodulatory effect of I-17 and 3m in infected macrophages, which exhibited increased expression of inducible Nitric Oxide Synthase (NOS2) and production of Nitric Oxide (NO). Our data indicate that I-17, 3m, and their analogs may be helpful in developing new drugs for treating leishmaniasis.

2.
J Enzyme Inhib Med Chem ; 38(1): 2254019, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37735942

RESUMO

Oxytocin (OT) is a neurohypophyseal peptide hormone containing a disulphide-bridged pseudocyclic conformation. The biomedical use of OT peptides is limited amongst others by disadvantageous pharmacokinetic parameters. To increase the stability of OT by replacing the disulphide bridge with the stable and more rigid [1,2,3]triazol-1-yl moiety, we employed the Cu2+-catalysed side chain-to-side chain azide-alkyne 1,3-cycloaddition. Here we report the design, synthesis, conformational analysis, and in vitro pharmacological activity of a homologous series of Cα1-to-Cα6 side chain-to-side chain [1,2,3]triazol-1-yl-containing OT analogues differing in the length of the bridge, location, and orientation of the linking moiety. Exploiting this macrocyclisation approach, it was possible to generate a systematic series of compounds providing interesting insight into the structure-conformation-function relationship of OT. Most analogues were able to adopt similar conformation to endogenous OT in water, namely, a type I ß-turn. This approach may in the future generate stabilised pharmacological peptide tools to advance understanding of OT physiology.


Assuntos
Alcinos , Ocitocina , Ocitocina/farmacologia , Azidas , Catálise , Dissulfetos
3.
Bioorg Med Chem Lett ; 80: 129119, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36581302

RESUMO

The ternary complex (eIF2·GTP·Met-tRNAiMet) and the eIF4F complex assembly are two major regulatory steps in the eukaryotic translation initiation. Inhibition of the ternary complex assembly is therefore a promising target for the development of novel anti-cancer therapeutics. Building on the finding that clotrimazole (CLT), a molecular probe that depletes intracellular Ca2+ stores and subsequently induce eIF2α phosphorylation, inhibit translation initiation, and reduce preferentially the expression of oncoproteins over "housekeeping" ones,1-3 we undertook structure activity relationship (SAR) studies that identified 3,3-diarylindoline-2-one #1181 as an interesting scaffold. Compound #1181 also induce phosphorylation of eIF2α thereby reducing the availability of the ternary complex, which leads to inhibition of translation initiation.4 Our subsequent efforts focused on understanding SAR iterative lead optimization to enhance potency and improve bioavailability. Herein, we report a complementing study focusing on heavily substituted symmetric and asymmetric 3,3-(o,m-disubstituted)diarylindoline-2-ones. These compounds were evaluated by the dual luciferase reporter ternary complex assay that recapitualates phosphorylation of eIF2α in a quantitative manner. We also evaluated all compounds by sulforhodamine B assay, which measures the overall effect of compounds on cell proliferations and/or viability.


Assuntos
Compostos de Bifenilo , Fator de Iniciação 2 em Eucariotos , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação , Biossíntese de Proteínas
4.
Eur J Med Chem ; 187: 111973, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31881453

RESUMO

Heme-regulated inhibitor (HRI), a eukaryotic translation initiation factor 2 alpha (eIF2α) kinase, is critically important for coupling protein synthesis to heme availability in reticulocytes and adaptation to various environmental stressors in all cells. HRI modifies the severity of several hemoglobin misfolding disorders including ß-thalassemia. Small molecule activators of HRI are essential for studying normal- and patho-biology of this kinase as well as for the treatment of various human disorders for which activation of HRI or phosphorylation of eIF2α may be beneficial. We previously reported development of 1-((1,4-trans)-4-aryloxycyclohexyl)-3-arylureas (cHAUs) as specific HRI activators and demonstrated their potential as molecular probes for studying HRI biology and as lead compounds for treatment of various human disorders. To develop more druglike cHAUs for in vivo studies and drug development and to expand the chemical space, we undertook bioassay guided structure-activity relationship studies replacing cyclohexyl ring with various 4-6-membered rings and explored further substitutions on the N-phenyl ring. We tested all analogs in the surrogate eIF2α phosphorylation and cell proliferation assays, and a subset of analogs in secondary mechanistic assays that included endogenous eIF2α phosphorylation and expression of C/EBP homologous protein (CHOP), a downstream effector. Finally, we determined specificity of these compounds for HRI by testing their anti-proliferative activity in cells transfected with siRNA targeting HRI or mock. These compounds have significantly improved cLogPs with no loss of potencies, making them excellent candidates for lead optimization for development of investigational new drugs that potently and specifically activate HRI.


Assuntos
Antineoplásicos/farmacologia , Fator de Iniciação 2 em Eucariotos/antagonistas & inibidores , Heme/antagonistas & inibidores , Ureia/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fator de Iniciação 2 em Eucariotos/metabolismo , Heme/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
5.
Curr Top Med Chem ; 18(7): 591-610, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29773065

RESUMO

The long-lasting impetus to design novel modes of macrocyclization, and their implementation into a wide range of bioactive peptides, originates from their contributions to the restriction of conformational space and the stabilization of preferential bioactive conformations that support higher efficacy and binding affinity to cognate macromolecular targets, improved specificity and lowering susceptibility to enzymatic degradation processes. Introducing CuI-catalyzed azide-alkyne cycloaddition (CuAAC), a prototypical click reaction, to the field of peptide sciences as a bio-orthogonal reaction that generates a disubstituted-[1,2,3]triazol-1-yl moiety as a pseudopeptidic bond that is peptidomimetic in nature, paved the way to its widespread application as a new and promising mode of macrocyclization. This review presents the state-of-art of CuAAC-mediated macrocyclization as it applies to an expansive range of bioactive peptides and explores the relationship among the structural diversity of CuAACmediated cyclizations, biological activities and conformations.


Assuntos
Alcinos/química , Azidas/química , Cobre/química , Reação de Cicloadição , Catálise
6.
Am J Hematol ; 92(11): 1198-1203, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28815695

RESUMO

Clinical and experimental evidences support a link between the complement system and the pathogenesis of diabetes complications. CD59, an extracellular cell membrane-anchored protein, inhibits formation of the membrane attack complex (MAC), the main effector of complement-mediated tissue damage. This complement regulatory activity of human CD59 (hCD59) is inhibited by hyperglycemia-induced ɛ-amino glycation of Lys41 . Biochemical and structural analyses of glycated proteins with known three-dimensional structure revealed that glycation of ɛ-amino lysyl residues occurs predominantly at "glycation motives" that include lysyl/lysyl pairs or proximity of a histidyl residue, in which the imidazolyl moiety is ≈ 5Å from the ɛ-amino group. hCD59 contains a distinctive Lys41 /His44 putative glycation motif within its active site. In a model of transgenic diabetic mice expressing in erythrocytes either the wild type or a H44Q mutant form of hCD59, we demonstrate in vivo that the His44 is required for Lys41 glycation and consequent functional inactivation of hCD59, as evidenced using a mouse erythrocytes hemolytic assay. Since (1) the His44 residue is not present in CD59 from other animal species and (2) humans are particularly prone to develop complications of diabetes, our results indicate that the Lys41 /His44 glycation motif in human CD59 may confer humans a higher risk of developing vascular disease in response to hyperglycemia.


Assuntos
Antígenos CD59/genética , Antígenos CD59/metabolismo , Eritrócitos/metabolismo , Regulação da Expressão Gênica , Histidina/metabolismo , Animais , Glicemia , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental , Membrana Eritrocítica/metabolismo , Glicosilação , Hemólise , Humanos , Lisina/metabolismo , Camundongos , Camundongos Transgênicos , Mutação
7.
J Med Chem ; 60(13): 5392-5406, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28590739

RESUMO

Heme-regulated inhibitor (HRI), an eukaryotic translation initiation factor 2 alpha (eIF2α) kinase, plays critical roles in cell proliferation, differentiation, adaptation to stress, and hemoglobin disorders. HRI phosphorylates eIF2α, which couples cellular signals, including endoplasmic reticulum (ER) stress, to translation. We previously identified 1,3-diarylureas and 1-((1,4-trans)-4-aryloxycyclohexyl)-3-arylureas (cHAUs) as specific activators of HRI that trigger the eIF2α phosphorylation arm of ER stress response as molecular probes for studying HRI biology and its potential as a druggable target. To develop drug-like cHAUs needed for in vivo studies, we undertook bioassay-guided structure-activity relationship studies and tested them in the surrogate eIF2α phosphorylation and cell proliferation assays. We further evaluated some of these cHAUs in endogenous eIF2α phosphorylation and in the expression of the transcription factor C/EBP homologous protein (CHOP) and its mRNA, demonstrating significantly improved solubility and/or potencies. These cHAUs are excellent candidates for lead optimization for development of investigational new drugs that potently and specifically activate HRI.


Assuntos
Antineoplásicos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Ureia/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos , Estrutura Molecular , Neoplasias Cutâneas/patologia , Relação Estrutura-Atividade , Ureia/análise , Ureia/química
8.
Diabetes Care ; 40(7): 981-984, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28450368

RESUMO

OBJECTIVE: Plasma glycated CD59 (pGCD59) is an emerging biomarker in diabetes. We assessed whether pGCD59 could predict the following: the results of the glucose challenge test (GCT) for screening of gestational diabetes mellitus (GDM) (primary analysis); and the diagnosis of GDM and prevalence of large for gestational age (LGA) newborns (secondary analyses). RESEARCH DESIGN AND METHODS: Case-control study of 1,000 plasma samples from women receiving standard prenatal care, 500 women having a normal GCT (control subjects) and 500 women with a failed GCT and a subsequent oral glucose tolerance test (case patients). RESULTS: Compared with control subjects, the median (interquartile range) pGCD59 value was 8.5-fold higher in case patients and 10-fold higher in GDM patients, as follows: control subjects 0.33 (0.19); case patients 2.79 (1.4); GDM patients 3.23 (1.43) (P < 0.001); area under the receiver operating characteristic curve 0.92. LGA prevalence was 4.3% in the lowest quartile and 13.5% in the highest quartile of pGCD59. CONCLUSIONS: One pGCD59 measurement during weeks 24-28 identifies pregnancy-induced glucose intolerance with high sensitivity and specificity and can potentially identify the risk for LGA.


Assuntos
Biomarcadores/sangue , Antígenos CD59/sangue , Diabetes Gestacional/diagnóstico , Intolerância à Glucose/diagnóstico , Glicemia/metabolismo , Estudos de Casos e Controles , Diabetes Gestacional/sangue , Feminino , Idade Gestacional , Intolerância à Glucose/sangue , Teste de Tolerância a Glucose , Humanos , Lactente , Gravidez , Cuidado Pré-Natal , Sensibilidade e Especificidade
9.
Endocr Rev ; 36(3): 272-88, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25859860

RESUMO

It is well established that the organ damage that complicates human diabetes is caused by prolonged hyperglycemia, but the cellular and molecular mechanisms by which high levels of glucose cause tissue damage in humans are still not fully understood. The prevalent hypothesis explaining the mechanisms that may underlie the pathogenesis of diabetes complications includes overproduction of reactive oxygen species, increased flux through the polyol pathway, overactivity of the hexosamine pathway causing intracellular formation of advanced glycation end products, and activation of protein kinase C isoforms. In addition, experimental and clinical evidence reported in past decades supports a strong link between the complement system, complement regulatory proteins, and the pathogenesis of diabetes complications. In this article, we summarize the body of evidence that supports a role for the complement system and complement regulatory proteins in the pathogenesis of diabetic vascular complications, with specific emphasis on the role of the membrane attack complex (MAC) and of CD59, an extracellular cell membrane-anchored inhibitor of MAC formation that is inactivated by nonenzymatic glycation. We discuss a pathogenic model of human diabetic complications in which a combination of CD59 inactivation by glycation and hyperglycemia-induced complement activation increases MAC deposition, activates pathways of intracellular signaling, and induces the release of proinflammatory, prothrombotic cytokines and growth factors. Combined, complement-dependent and complement-independent mechanisms induced by high glucose promote inflammation, proliferation, and thrombosis as characteristically seen in the target organs of diabetes complications.


Assuntos
Antígenos CD59/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento/metabolismo , Angiopatias Diabéticas/metabolismo , Animais , Angiopatias Diabéticas/imunologia , Humanos
10.
J Med Chem ; 57(22): 9424-34, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25347033

RESUMO

Side chain-to-side chain cyclizations represent a strategy to select a family of bioactive conformations by reducing the entropy and enhancing the stabilization of functional ligand-induced receptor conformations. This structural manipulation contributes to increased target specificity, enhanced biological potency, improved pharmacokinetic properties, increased functional potency, and lowered metabolic susceptibility. The Cu(I)-catalyzed azide-alkyne 1,3-dipolar Huisgen's cycloaddition, the prototypic click reaction, presents a promising opportunity to develop a new paradigm for an orthogonal bioorganic and intramolecular side chain-to-side chain cyclization. In fact, the proteolytic stable 1,4- or 4,1-disubstituted [1,2,3]triazolyl moiety is isosteric with the peptide bond and can function as a surrogate of the classical side chain-to-side chain lactam forming bridge. Herein we report the design, synthesis, conformational analysis, and functional biological activity of a series of i-to-i+5 1,4- and 4,1-disubstituted [1,2,3]triazole-bridged cyclopeptides derived from MT-II, the homodetic Asp(5) to Lys(10) side chain-to-side chain bridged heptapeptide, an extensively studied agonist of melanocortin receptors.


Assuntos
Química Farmacêutica/métodos , Lactamas/química , Metalotioneína/química , Triazóis/química , Azidas/química , Cobre/química , Desenho de Fármacos , Células HEK293 , Humanos , Ligantes , Modelos Lineares , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Peptídeos/química , Receptores de Melanocortina/agonistas , Relação Estrutura-Atividade
11.
Proc Natl Acad Sci U S A ; 111(31): E3187-95, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049413

RESUMO

The interaction of the eukaryotic translation initiation factor eIF4E with the initiation factor eIF4G recruits the 40S ribosomal particle to the 5' end of mRNAs, facilitates scanning to the AUG start codon, and is crucial for eukaryotic translation of nearly all genes. Efficient recruitment of the 40S particle is particularly important for translation of mRNAs encoding oncoproteins and growth-promoting factors, which often harbor complex 5' UTRs and require efficient initiation. Thus, inhibiting the eIF4E/eIF4G interaction has emerged as a previously unpursued route for developing anticancer agents. Indeed, we discovered small-molecule inhibitors of this eIF4E/eIF4G interaction (4EGIs) that inhibit translation initiation both in vitro and in vivo and were used successfully in numerous cancer-biology and neurobiology studies. However, their detailed molecular mechanism of action has remained elusive. Here, we show that the eIF4E/eIF4G inhibitor 4EGI-1 acts allosterically by binding to a site on eIF4E distant from the eIF4G binding epitope. Data from NMR mapping and high-resolution crystal structures are congruent with this mechanism, where 4EGI-1 attaches to a hydrophobic pocket of eIF4E between ß-sheet2 (L60-T68) and α-helix1 (E69-N77), causing localized conformational changes mainly in the H78-L85 region. It acts by unfolding a short 310-helix (S82-L85) while extending α-helix1 by one turn (H78-S82). This unusual helix rearrangement has not been seen in any previous eIF4E structure and reveals elements of an allosteric inhibition mechanism leading to the dislocation of eIF4G from eIF4E.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Hidrazonas/química , Hidrazonas/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Regulação Alostérica , Sítios de Ligação , Cristalografia por Raios X , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação Eucariótico 4G/química , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Peptídeos/química , Peptídeos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Capuzes de RNA/metabolismo , Soluções
12.
J Med Chem ; 57(12): 5094-111, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24827861

RESUMO

The 4EGI-1 is the prototypic inhibitor of eIF4E/eIF4G interaction, a potent inhibitor of translation initiation in vitro and in vivo and an efficacious anticancer agent in animal models of human cancers. We report on the design, synthesis, and in vitro characterization of a series of rigidified mimetic of this prototypic inhibitor in which the phenyl in the 2-(4-(3,4-dichlorophenyl)thiazol-2-yl) moiety was bridged into a tricyclic system. The bridge consisted one of the following: ethylene, methylene oxide, methylenesulfide, methylenesulfoxide, and methylenesulfone. Numerous analogues in this series were found to be markedly more potent than the parent prototypic inhibitor in the inhibition of eIF4E/eIF4G interaction, thus preventing the eIF4F complex formation, a rate limiting step in the translation initiation cascade in eukaryotes, and in inhibition of human cancer cell proliferation.


Assuntos
Antineoplásicos/síntese química , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação Eucariótico 4G/antagonistas & inibidores , Compostos Heterocíclicos com 3 Anéis/síntese química , Hidrazonas/química , Tiazóis/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Mimetismo Molecular , Estereoisomerismo , Relação Estrutura-Atividade
13.
J Clin Endocrinol Metab ; 99(6): E999-E1006, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24628556

RESUMO

CONTEXT: Human CD59, an inhibitor of the membrane attack complex of complement, is inactivated by glycation. Glycation inactivation of CD59 enhances complement-mediated injury in target organs of diabetes complications. OBJECTIVE: We hypothesized that circulating soluble glycated CD59 (GCD59) represents a novel biomarker of blood glucose handling and aimed to conduct human study protocols to test this hypothesis. DESIGN, SETTING, PARTICIPANTS, AND OUTCOME MEASURES: Using a newly developed ELISA, we measured circulating soluble GCD59 in samples from 3 separate human studies evaluating acute and chronic glucose handling and glucose responses to insulin therapy. Study 1 (normal vs diabetic subjects) evaluated the cross-sectional association between GCD59 and glycated hemoglobin (HbA1c) in 400 subjects with and without type 2 diabetes. Study 2 (oral glucose tolerance test [OGTT] in nondiabetics) evaluated whether fasting GCD59 independently predicted the 2-hour glucose response to an OGTT in 109 subjects without a diagnosis of diabetes. Study 3 (intensified insulin treatment) evaluated the effect of intensification of glycemic control with insulin on GCD59 in 21 poorly controlled individuals with diabetes. RESULTS: In study 1 (normal vs diabetic subjects), GCD59 was independently and positively associated with HbA1c in individuals with and without diabetes (ß = 1.1, P < .0001 and ß = 1.1 P < .001, respectively). In study 2 (OGTT in nondiabetics), a single GCD59 measurement independently predicted the results of the 2-hour OGTT (ß = 19.8, P < .05) after multivariate modeling. In study 3 (intensified insulin treatment), intensification of glucose control with insulin resulted in a concomitant and parallel reduction of average weekly glucose and GCD59 within 2 weeks. CONCLUSIONS: We observed robust relationships between a single measurement of blood levels of GCD59 and both acute (2-hour OGTT) and chronic (HbA1c) measures of glucose handling. Lowering of GCD59 levels closely reflected lowering of average weekly glucose within 2 weeks. The role of GCD59 in the diagnosis, management, and vascular risk stratification in diabetes warrants further investigation.


Assuntos
Glicemia/metabolismo , Antígenos CD59/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , Glicosilação , Humanos , Insulina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Eur J Med Chem ; 77: 361-77, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24675136

RESUMO

Protein-protein interactions are critical for regulating the activity of translation initiation factors and multitude of other cellular process, and form the largest block of untapped albeit most challenging targets for drug development. 4EGI-1, (E/Z)-2-(2-(4-(3,4-dichlorophenyl)thiazol-2-yl)hydrazono)-3-(2-nitrophenyl)propanoic acid, is a hit compound discovered in a screening campaign of small molecule libraries as an inhibitor of translation initiation factors eIF4E and eIF4G protein-protein interaction; it inhibits translation initiation in vitro and in vivo. A series of 4EGI-1-derived thiazol-2-yl hydrazones have been designed and synthesized in order to delineate the structural latitude and improve its binding affinity to eIF4E, and increase its potency in inhibiting the eIF4E/eIF4G interaction. Probing a wide range of substituents on both phenyl rings comprising the 3-phenylpropionic acid and 4-phenylthiazolidine moieties in the context of both E- and Z-isomers of 4EGI-1 led to analogs with enhanced binding affinity and translation initiation inhibitory activities.


Assuntos
Fator de Iniciação Eucariótico 4G/antagonistas & inibidores , Hidrazonas/farmacologia , Proteínas de Transporte Nucleocitoplasmático/antagonistas & inibidores , Tiazóis/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Fator de Iniciação Eucariótico 4G/química , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Estrutura Molecular , Proteínas de Transporte Nucleocitoplasmático/química , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
15.
Chembiochem ; 15(4): 595-611, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24458973

RESUMO

4EGI-1, the prototypic inhibitor of eIF4E/eIF4G interaction, was identified in a high-throughput screening of small-molecule libraries with the aid of a fluorescence polarization assay that measures inhibition of binding of an eIF4G-derived peptide to recombinant eIF4E. As such, the molecular probe 4EGI-1 has potential for the study of molecular mechanisms involved in human disorders characterized by loss of physiological restraints on translation initiation. A hit-to-lead optimization campaign was carried out to overcome the configurational instability in 4EGI-1, which stems from the E-to-Z isomerization of the hydrazone function. We identified compound 1 a, in which the labile hydrazone was incorporated into a rigid indazole scaffold, as a promising rigidified 4EGI-1 mimetic lead. In a structure-activity relationship study directed towards probing the structural latitude of this new chemotype as an inhibitor of eIF4E/eIF4G interaction and translation initiation we identified 1 d, an indazole-based 4EGI-1 mimetic, as a new and improved lead inhibitor of eIF4E/eIF4G interaction and a promising molecular probe candidate for elucidation of the role of cap-dependent translation initiation in a host of pathophysiological states.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Hidrazonas/metabolismo , Indazóis/química , Tiazóis/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação Eucariótico 4G/antagonistas & inibidores , Humanos , Hidrazonas/química , Hidrazonas/farmacologia , Indazóis/síntese química , Indazóis/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/farmacologia
16.
J Med Chem ; 56(23): 9457-70, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24261904

RESUMO

Heme-regulated inhibitor kinase (HRI), a eukaryotic translation initiation factor 2 alpha (eIF2α) kinase, plays critical roles in cell proliferation, differentiation, and adaptation to cytoplasmic stress. HRI is also a critical modifier of hemoglobin disorders such as ß-thalassemia. We previously identified N,N'-diarylureas as potent activators of HRI suitable for studying the biology of this important kinase. To expand the repertoire of chemotypes that activate HRI, we screened a ∼1900 member N,N'-disubstituted urea library in the surrogate eIF2α phosphorylation assay, identifying N-aryl,N'-cyclohexylphenoxyurea as a promising scaffold. We validated hit compounds as a bona fide HRI activators in secondary assays and explored the contributions of substitutions on the N-aryl and N'-cyclohexylphenoxy groups to their activity by studying focused libraries of complementing analogues. We tested these N-aryl,N'-cyclohexylphenoxyureas in the surrogate eIF2α phosphorylation and cell proliferation assays, demonstrating significantly improved bioactivities and specificities. We consider these compounds to represent lead candidates for the development of potent and specific HRI activators.


Assuntos
Ativadores de Enzimas/química , Ureia/análogos & derivados , eIF-2 Quinase/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ativadores de Enzimas/síntese química , Humanos , Concentração Inibidora 50 , Células MCF-7 , Relação Estrutura-Atividade
17.
Eur J Med Chem ; 69: 537-53, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24095748

RESUMO

The growing recognition of inhibition of translation initiation as a new and promising paradigm for mechanism-based anti-cancer therapeutics is driving the development of potent, specific, and druggable inhibitors. The 3,3-diaryloxindoles were recently reported as potential inhibitors of the eIF2·GTP·Met-tRNAi(Met) ternary complex assembly and 3-{5-tert-butyl-2-hydroxyphenyl}-3-phenyl-1,3-dihydro-2H-indol-2-one #1181 was identified as the prototypic agent of this chemotype. Herein, we report our continuous effort to further develop this chemotype by exploring the structural latitude toward different polar and hydrophobic substitutions. Many of the novel compounds are more potent than the parent compound in the dual luciferase ternary complex reporter assay, activate downstream effectors of reduced ternary complex abundance, and inhibit cancer cell proliferation in the low µM range. Moreover, some of these compounds are decorated with substituents that are known to endow favorable physicochemical properties and as such are good candidates for evaluation in animal models of human cancer.


Assuntos
Antineoplásicos/farmacologia , Fator de Iniciação 2 em Eucariotos/antagonistas & inibidores , Guanosina Trifosfato/antagonistas & inibidores , Indóis/farmacologia , RNA de Transferência de Metionina/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fator de Iniciação 2 em Eucariotos/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Indóis/síntese química , Indóis/química , Camundongos , Estrutura Molecular , RNA de Transferência de Metionina/metabolismo , Relação Estrutura-Atividade
18.
Chembiochem ; 14(10): 1255-62, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23784735

RESUMO

Chemical genetics has evolved into a powerful tool for studying gene function in normal and pathobiology. PKR and PERK, two eukaryotic translation initiation factor 2 alpha (eIF2α) kinases, play critical roles in the maintenance of cellular hemostasis, metabolic stability, and anti-viral defenses. Both kinases interact with and phosphorylate additional substrates including tumor suppressor p53 and nuclear protein 90. Loss of function of both kinases has been studied by reverse genetics and with recently identified inhibitors. In contrast, no activating probes for studying the catalytic activity of these kinases are available. We identified 3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5,7-dihydroxy-4H-chromen-4-one (DHBDC) as a specific dual activator of PKR and PERK by screening a chemical library of 20 000 small molecules in a dual luciferase surrogate eIF2α phosphorylation assay. We present here extensive biological characterization and a preliminary structure-activity relationship of DHBDC, which phosphorylates eIF2α by activating PKR and PERK but no other eIF2α kinases. These agents also activate downstream effectors of eIF2α phosphorylation by inducing CEBP homologue protein, suppressing cyclin D1 expression, and inhibiting cancer cell proliferation, all in a manner dependent on PKR and PERK. Consistent with the role of eIF2α phosphorylation in viral infection, DHBDC inhibits the proliferation of human hepatitis C virus. Finally, DHBDC induces the phosphorylation of IκBα and activates the NF-κB pathway. Surprisingly, activation of the NF-κB pathway is dependent on PERK but independent of PKR activity. These data indicate that DHBDC is an invaluable probe for elucidating the role of PKR and PERK in normal and pathobiology.


Assuntos
Benzopiranos/farmacologia , NF-kappa B/genética , eIF-2 Quinase/metabolismo , Catálise , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Humanos , NF-kappa B/metabolismo , Fosforilação , Relação Estrutura-Atividade , Transfecção , eIF-2 Quinase/genética
19.
Am J Hematol ; 88(8): 670-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23670858

RESUMO

Increasing evidence links the complement system with complications of human diabetes. The complement regulatory protein CD59, an inhibitor of formation of membrane attack complex (MAC), is inhibited by hyperglycemia-induced glycation fostering increased deposition of MAC, a major effector of complement-mediated tissue damage. CD59, an ubiquitous GPI-anchored membrane protein, is shed from cell membranes by phospholipases generating a soluble form present in blood and urine. We established an enzyme-linked immunosorbent assay (ELISA) to measure serum/plasma glycated human CD59 (hCD59) (GCD59) and evaluated its potential as a diabetes biomarker. We used a synthetic peptide strategy to generate (a) a mouse monoclonal antibody to capture hCD59, (b) a rabbit monoclonal antibody to detect GCD59, and (c) a GCD59 surrogate for assay standardization. ELISA conditions were optimized for precision, reproducibility, and clinical sensitivity. The clinical utility of the assay was initially evaluated in 24 subjects with or without diabetes and further validated in a study that included 100 subjects with and 90 subjects without a diagnosis of diabetes. GCD59 (a) was significantly higher in individuals with than in individual without diabetes, (b) was independently associated with HbA1c, and (c) identified individuals with diabetes with high specificity and sensitivity. We report the development and standardization of a novel, sensitive, and specific ELISA for measuring GCD59 in blood. The assay distinguished individuals with diabetes from those without, and showed strong correlation between GCD59 and HbA1c. Because GCD59 likely contributes to the pathogenesis of diabetes complications, measurement of blood levels of GCD59 may be useful in the diagnosis and management of diabetes.


Assuntos
Antígenos CD59/sangue , Diabetes Mellitus Tipo 2/sangue , Adolescente , Adulto , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/imunologia , Biomarcadores/sangue , Biomarcadores/química , Antígenos CD59/química , Antígenos CD59/imunologia , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Hemoglobinas Glicadas/imunologia , Hemoglobinas Glicadas/metabolismo , Glicosilação , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos , Sensibilidade e Especificidade
20.
Biopolymers ; 98(6): 535-45, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23203759

RESUMO

The recently introduced Cu(I)-catalyzed azide-alkyne 1,3-dipolar Huisgen cycloaddition as a prototypic "click chemistry reaction" presented an opportunity for introducing the 1,4-disubstituted-[1,2,3]triazolyl moiety as a new isostere for peptide bonds in the backbone. Previous study in our lab focused on the synthesis of a model i-to-i+4 side chain-to-side chain 1,4- and 4,1-disubstituted-[1,2,3]triazolyl-bridged cyclo-nonapeptide I (Scheme 1) as analogues of its structurally related helical i-to-i+4 lactam-bridged cyclo-nonapeptide [Lys¹³ (&¹), Asp¹7 (&²)]parathyroid hormone related peptide (PTHrP)(11-19)NH2 (1) a truncated version of the α-helical and potent parathyroid hormone receptor 1 agonist [Lys¹³ (&¹), Asp¹7 (&²)]PTHrP(1-34)NH2, (2,3) N(α) -Ac-Lys-Gly-Lys(&¹)-Ser-Ile-Gln-Asp(&²)-Leu-Arg-NH2]. Systematic [1,2,3]triazolyl-containing bridge structure-conformation relationship studies in hexafluoroacetone/water mixture included incorporation of bridges varied in size and position and orientation of the triazolyl ring within the bridge. These studies revealed that the size of methylene bridge flanking triazolyl moiety is critical to reproduce in the heterodetic cyclo-nonapeptides. The conformational features of the analogues cyclo-nonapeptide in which Lys¹³ and Asp¹7 are bridged by the isosteric lactam. Here, we extend our conformational analysis to dimethyl sulfoxide/water mixture in an effort to characterize inherent conformational properties of the heterodetic cyclopeptides that are solvent independent. Our present study shows that the physicochemical properties of the structure-supporting solvent cannot override the effect of the size of methylene bridge to form helical mimetic structures. Moreover, we prove that [1,2,3]triazolyl ring is not a simple bioisostere of lactam bond, but it affects the secondary structure of the peptide, in relation to its positioning orientation.


Assuntos
Oligopeptídeos/química , Proteína Relacionada ao Hormônio Paratireóideo/química , Peptídeos Cíclicos/química , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Conformação Proteica , Solventes , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...