Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(5): 6528-6535, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876236

RESUMO

We experimentally demonstrate a one-color two-photon transition from the 5S1/2 ground state to the 6S1/2 excited state in rubidium (Rb) vapor using a continuous wave laser at 993 nm. The Rb vapor contains both isotopes (85Rb and 87Rb) in their natural abundances. The electric dipole-allowed transitions are characterized by varying the power and polarization of the excitation laser. Since the optical setup is relatively simple, and the energies of the allowed levels are impervious to stray magnetic fields, this is an attractive choice for a frequency reference at 993 nm, with possible applications in precision measurements and quantum information processing.

2.
Nanotechnology ; 27(36): 365301, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27479353

RESUMO

The advancement of trapping and detection of nano-objects at very low laser powers in the near-infra-red region (NIR) is crucial for many applications. Singular visible-light nano-optics based on abrupt phase changes have recently demonstrated a significant improvement in molecule detection. Here, we propose and demonstrate tunable plasmonic nanodevices, which can improve both the trapping field enhancement and detection of nano-objects using singular phase drops in the NIR range. The plasmonic nanostructures, which consist of gaps with dimensions 50 nm × 50 nm connecting nanorings in arrays is discussed. These gaps act as individual detection and trapping sites. The tunability of the system is evident from extinction and reflection spectra while increasing the aperture size in the arrays. Additionally, in the region where the plasmonic nano-array exhibits topologically-protected, near-zero reflection behaviour, the phase displays a rapid change. Our experimental data predict that, using this abrupt phase changes, one can improve the detection sensitivity by 10 times compared to the extinction spectra method. We finally report experimental evidence of 100 nm polystyrene beads trapping using low incident power on these devices. The overall design demonstrates strong capability as an optical, label-free, non-destructive tool for single molecule manipulation where low trapping intensity, minimal photo bleaching and high sensitivity is required.

3.
Rev Sci Instrum ; 85(11): 111501, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430090

RESUMO

We review the method of producing adiabatic optical micro- and nanofibers using a hydrogen/oxygen flame brushing technique. The flame is scanned along the fiber, which is being simultaneously stretched by two translation stages. The tapered fiber fabrication is reproducible and yields highly adiabatic tapers with either exponential or linear profiles. Details regarding the setup of the flame brushing rig and the various parameters used are presented. Information available from the literature is compiled and further details that are necessary to have a functioning pulling rig are included. This should enable the reader to fabricate various taper profiles, while achieving adiabatic transmission of ∼99% for fundamental mode propagation. Using this rig, transmissions ranging from 85% to 95% for higher order modes in an optical nanofiber have been obtained.

4.
Opt Express ; 22(13): 16322-34, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24977883

RESUMO

The evanescent field of an optical nanofiber presents a versatile interface for the manipulation of micron-scale particles in dispersion. Here, we present a detailed study of the optical binding interactions of a pair of 3.13 µm SiO(2) spheres in the nanofiber evanescent field. Preferred equilibrium positions for the spheres as a function of nanofiber diameter and sphere size are discussed. We demonstrated optical propulsion and self-arrangement of chains of one to seven 3.13 µm SiO(2) particles; this effect is associated with optical binding via simulated trends of multiple scattering effects. Incorporating an optical nanofiber into an optical tweezers setup facilitated the individual and collective introduction of selected particles to the nanofiber evanescent field for experiments. Computational simulations provide insight into the dynamics behind the observed behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA