Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
CPT Pharmacometrics Syst Pharmacol ; 13(1): 118-131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37833845

RESUMO

Hepatic impairment (HI) moderately (<5-fold) affects the systemic exposure (i.e., area under the plasma concentration-time curve [AUC]) of drugs that are substrates of the hepatic sinusoidal organic anion transporting polypeptide (OATP) transporters and are excreted unchanged in the bile and/or urine. However, the effect of HI on their AUC is much greater (>10-fold) for drugs that are also substrates of cytochrome P450 (CYP) 3A enzymes. Using the extended clearance model, through simulations, we identified the ratio of sinusoidal efflux clearance (CL) over the sum of metabolic and biliary CLs as important in predicting the impact of HI on the AUC of dual OATP/CYP3A substrates. Because HI may reduce hepatic CYP3A-mediated CL to a greater extent than biliary efflux CL, the greater the contribution of the former versus the latter, the greater the impact of HI on drug AUC ratio (AUCRHI ). Using physiologically-based pharmacokinetic modeling and simulation, we predicted relatively well the AUCRHI of OATP substrates that are not significantly metabolized (pitavastatin, rosuvastatin, valsartan, and gadoxetic acid). However, there was a trend toward underprediction of the AUCRHI of the dual OATP/CYP3A4 substrates fimasartan and atorvastatin. These predictions improved when the sinusoidal efflux CL of these two drugs was increased in healthy volunteers (i.e., before incorporating the effect of HI), and by modifying the directionality of its modulation by HI (i.e., increase or decrease). To accurately predict the effect of HI on AUC of hepatobiliary cleared drugs it is important to accurately predict all hepatobiliary pathways, including sinusoidal efflux CL.


Assuntos
Citocromo P-450 CYP3A , Transportadores de Ânions Orgânicos , Humanos , Citocromo P-450 CYP3A/metabolismo , Fígado/metabolismo , Transporte Biológico , Rosuvastatina Cálcica , Transportadores de Ânions Orgânicos/metabolismo , Interações Medicamentosas
2.
Clin Pharmacol Ther ; 114(6): 1170-1183, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37750401

RESUMO

Drug-drug interactions (DDIs) involving hepatic organic anion transporting polypeptides 1B1/1B3 (OATP1B) can be substantial, however, challenges remain for predicting interaction risk. Emerging evidence suggests that endogenous biomarkers, particularly coproporphyrin-I (CP-I), can be used to assess in vivo OATP1B activity. The present work under the International Consortium for Innovation and Quality in Pharmaceutical Development was aimed primarily at assessing CP-I as a biomarker for informing OATP1B DDI risk. Literature and unpublished CP-I data along with pertinent in vitro and clinical DDI information were collected to identify DDIs primarily involving OATP1B inhibition and assess the relationship between OATP1B substrate drug and CP-I exposure changes. Static models to predict changes in exposure of CP-I, as a selective OATP1B substrate, were also evaluated. Significant correlations were observed between CP-I area under the curve ratio (AUCR) or maximum concentration ratio (Cmax R) and AUCR of substrate drugs. In general, the CP-I Cmax R was equal to or greater than the CP-I AUCR. CP-I Cmax R < 1.25 was associated with absence of OATP1B-mediated DDIs (AUCR < 1.25) with no false negative predictions. CP-I Cmax R < 2 was associated with weak OATP1B-mediated DDIs (AUCR < 2). A correlation was identified between CP-I exposure changes and OATP1B1 static DDI predictions. Recommendations for collecting and interpreting CP-I data are discussed, including a decision tree for guiding DDI risk assessment. In conclusion, measurement of CP-I is recommended to inform OATP1B inhibition potential. The current analysis identified changes in CP-I exposure that may be used to prioritize, delay, or replace clinical DDI studies.


Assuntos
Coproporfirinas , Transportadores de Ânions Orgânicos , Humanos , Coproporfirinas/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado , Interações Medicamentosas , Biomarcadores , Indústria Farmacêutica
3.
Drug Metab Dispos ; 51(12): 1547-1550, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37775331

RESUMO

Drug-metabolizing enzymes and transporters (DMETs) are key regulators of the pharmacokinetics, efficacy, and toxicity of therapeutics. Over the past two decades, significant advancements in in vitro methodologies, targeted proteomics, in vitro to in vivo extrapolation methods, and integrated computational approaches such as physiologically based pharmacokinetic modeling have unequivocally contributed to improving our ability to quantitatively predict the role of DMETs in absorption, distribution, metabolism, and excretion and drug-drug interactions. However, the paucity of data regarding alterations in DMET activity in specific populations such as pregnant individuals, lactation, pediatrics, geriatrics, organ impairment, and disease states such as, cancer, kidney, and liver diseases and inflammation has restricted our ability to realize the full potential of these recent advancements. We envision that a series of carefully curated articles in a special supplementary issue of Drug Metabolism and Disposition will summarize the latest progress in in silico, in vitro, and in vivo approaches to characterize alteration in DMET activity and quantitatively predict drug disposition in specific populations. In addition, the supplementary issue will underscore the current scientific knowledge gaps that present formidable barriers to fully understand the clinical implications of altered DMET activity in specific populations and highlight opportunities for multistakeholder collaboration to advance our collective understanding of this rapidly emerging area. SIGNIFICANCE STATEMENT: This commentary highlights current knowledge and identifies gaps and key challenges in understanding the role of drug-metabolizing enzymes and transporters (DMETs) in drug disposition in specific populations. With this commentary for the special issue in Drug Metabolism and Disposition, the authors intend to increase interest and invite potential contributors whose research is focused or has aided in expanding the understanding around the role and impact of DMETs in drug disposition in specific populations.


Assuntos
Hepatopatias , Proteínas de Membrana Transportadoras , Gravidez , Feminino , Humanos , Criança , Proteínas de Membrana Transportadoras/metabolismo , Interações Medicamentosas , Inflamação , Taxa de Depuração Metabólica
4.
Drug Metab Rev ; 55(4): 343-370, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37644867

RESUMO

On behalf of all the authors, I am pleased to share our third annual review on drug transporter science with an emphasis on articles published and deemed influential in signifying drug transporters' role in drug disposition in the year 2022. As the drug transporter field is rapidly evolving several key findings were noted including promising endogenous biomarkers, rhythmic activity, IVIVE approaches in transporter-mediated clearance, new modality interaction, and transporter effect on gut microbiome. As identified previously (Chothe et Cal. 2021, 2022) the goal of this review is to highlight key findings without a comprehensive overview of each article and to this end, each coauthor independently selected 1-3 peer-reviewed articles published or available online in the year 2022 (Table 1). Each article is summarized in synopsis and commentary with unbiased viewpoints by each coauthor. We strongly encourage readers to consult original articles for specifics of the study. Finally, I would like to thank all coauthors for their continued support in writing this annual review on drug transporters and invite anyone interested in contributing to future versions of this review.


Assuntos
Proteínas de Membrana Transportadoras , Humanos , Previsões , Interações Medicamentosas
5.
Drug Metab Dispos ; 51(10): 1391-1402, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37524541

RESUMO

Numerous biomedical applications have been described for liver-humanized mouse models, such as in drug metabolism or drug-drug interaction (DDI) studies. However, the strong enlargement of the bile acid (BA) pool due to lack of recognition of murine intestine-derived fibroblast growth factor-15 by human hepatocytes and a resulting upregulation in the rate-controlling enzyme for BA synthesis, cytochrome P450 (CYP) 7A1, may pose a challenge in interpreting the results obtained from such mice. To address this challenge, the human fibroblast growth factor-19 (FGF19) gene was inserted into the Fah-/- , Rag2-/- , Il2rg-/- NOD (FRGN) mouse model, allowing repopulation with human hepatocytes capable of responding to FGF19. While a decrease in CYP7A1 expression in human hepatocytes from humanized FRGN19 mice (huFRGN19) and a concomitant reduction in BA production was previously shown, a detailed analysis of the BA pool in these animals has not been elucidated. Furthermore, there are sparse data on the use of this model to assess potential clinical DDI. In the present work, the change in BA composition in huFRGN19 compared with huFRGN control animals was systematically evaluated, and the ability of the model to recapitulate a clinically described CYP3A4-mediated DDI was assessed. In addition to a massive reduction in the total amount of BA, FGF19 expression in huFRGN19 mice resulted in significant changes in the profile of various primary, secondary, and sulfated BAs in serum and feces. Moreover, as observed clinically, administration of the pregnane X receptor agonist rifampicin reduced the oral exposure of the CYP3A4 substrate triazolam. SIGNIFICANCE STATEMENT: Transgenic expression of FGF19 normalizes the unphysiologically high level of bile acids in a chimeric liver-humanized mouse model and leads to massive changes in bile acid composition. These adaptations could overcome one of the potential impediments in the use of these mouse models for drug-drug interaction studies.


Assuntos
Ácidos e Sais Biliares , Citocromo P-450 CYP3A , Camundongos , Humanos , Animais , Ácidos e Sais Biliares/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Camundongos Endogâmicos NOD , Fígado/metabolismo , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/metabolismo , Interações Medicamentosas
6.
Mol Pharm ; 20(7): 3505-3518, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37283406

RESUMO

Madin-Darby canine kidney (MDCK) cells are widely used to study epithelial cell functionality. Their low endogenous drug transporter protein levels make them an amenable system to investigate transepithelial permeation and drug transporter protein activity after their transfection. MDCK cells display diverse phenotypic traits, and as such, laboratory-to-laboratory variability in drug permeability assessments is observed. Consequently, in vitro-in vivo extrapolation (IVIVE) approaches using permeability and/or transporter activity data require calibration. A comprehensive proteomic quantification of 11 filter-grown parental or mock-transfected MDCK monolayers from 8 different pharmaceutical laboratories using the total protein approach (TPA) is provided. The TPA enables estimations of key morphometric parameters such as monolayer cellularity and volume. Overall, metabolic liability to xenobiotics is likely to be limited for MDCK cells due to the low expression of required enzymes. SLC16A1 (MCT1) was the highest abundant SLC transporter linked to xenobiotic activity, while ABCC4 (MRP4) was the highest abundant ABC transporter. Our data supports existing findings that claudin-2 levels may be linked to tight junction modulation, thus impacting trans-epithelial resistance. This unique database provides data on more than 8000 protein copy numbers and concentrations, thus allowing an in-depth appraisal of the control monolayers used in each laboratory.


Assuntos
Proteoma , Proteômica , Animais , Cães , Células Madin Darby de Rim Canino , Proteoma/metabolismo , Junções Íntimas/metabolismo , Rim/metabolismo , Proteínas de Transporte/metabolismo
7.
CPT Pharmacometrics Syst Pharmacol ; 12(2): 261-273, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36540952

RESUMO

Physiologically based pharmacokinetic models, populated with drug-metabolizing enzyme and transporter (DMET) abundance, can be used to predict the impact of hepatic impairment (HI) on the pharmacokinetics (PK) of drugs. To increase confidence in the predictive power of such models, they must be validated by comparing the predicted and observed PK of drugs in HI obtained by phenotyping (or probe drug) studies. Therefore, we first predicted the effect of all stages of HI (mild to severe) on the PK of drugs primarily metabolized by cytochrome P450 (CYP) 3A enzymes using the default HI module of Simcyp Version 21, populated with hepatic and intestinal CYP3A abundance data. Then, we validated the predictions using CYP3A probe drug phenotyping studies conducted in HI. Seven CYP3A substrates, metabolized primarily via CYP3A (fraction metabolized, 0.7-0.95), with low to high hepatic availability, were studied. For all stages of HI, the predicted PK parameters of drugs were within twofold of the observed data. This successful validation increases confidence in using the DMET abundance data in HI to predict the changes in the PK of drugs cleared by DMET for which phenotyping studies in HI are not available or cannot be conducted. In addition, using CYP3A drugs as an example, through simulations, we identified the salient PK factors that drive the major changes in exposure (area under the plasma concentration-time profile curve) to drugs in HI. This theoretical framework can be applied to any drug and DMET to quickly determine the likely magnitude of change in drug PK due to HI.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Humanos , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Simulação por Computador , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Modelos Biológicos
8.
AAPS J ; 24(6): 99, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123502

RESUMO

The liver is central to the elimination of many drugs from the body involving multiple processes and understanding of these processes is important to quantitively assess hepatic clearance of drugs. The synthetic STING (STimulator of INterferon Genes protein) agonist is a new class of drugs currently being evaluated in clinical trials as a potential anticancer therapy. In this study, we used ML00960317 (synthetic STING agonist) to investigate the hepatobiliary disposition of this novel molecular entity. A bile-duct cannulated (BDC) rat study indicated that biliary excretion is the major route of elimination for ML00960317 (84% of parent dose in bile). The human biliary clearance using in vitro sandwich cultured human hepatocyte model predicted significant biliary excretion of ML00960317 (biliary excretion index (BEI) of 47%). Moreover, the transport studies using transporter expressing cell lines, hepatocytes, and membrane vesicles indicated that ML00960317 is a robust substrate of OATP1B1, OATP1B3, and MRP2. Using relative expression factor approach, the combined contribution of OATP1B1 (fraction transported (ft) = 0.62) and OATP1B3 (ft = 0.31) was found to be 93% of the active uptake clearance of ML00960317 into the liver. Furthermore, OATP1B1 and OATP1B3-mediated uptake of ML00960317 was inhibited by rifampicin with IC50 of 6.5 and 2.3 µM, respectively indicating an in vivo DDI risk (R value of 1.5 and 2.5 for OATP1B1 and OATP1B3, respectively). These results highlighted an important role of OATP1B1, OATP1B3, and MRP2 in the hepatobiliary disposition of ML00960317. These pathways may act as rate-determining steps in the hepatic clearance of ML00960317 thus presenting clinical DDI risk.


Assuntos
Bile , Transportadores de Ânions Orgânicos , Animais , Ânions/metabolismo , Bile/metabolismo , Humanos , Interferons/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Transportadores de Ânions Orgânicos/metabolismo , Peptídeos , Ratos , Rifampina , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto
9.
Pharmacol Ther ; 238: 108271, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36002079

RESUMO

Predicting transporter-based drug clearance (CL) and tissue concentrations (TC) in humans is important to reduce the risk of failure during drug development. In addition, when transporters are present at the tissue:blood interface (e.g., in the liver, blood-brain barrier), predicting TC is important to predict the drug's efficacy and safety. With the advent of quantitative targeted proteomics, in vitro to in vivo extrapolation (IVIVE) of transporter-based drug CL and TC is now possible using transporter-expressing models (cells lines, membrane vesicles) and the in vivo to in vitro relative expression of transporters (REF) as a scaling factor. Unlike other approaches based on physiological scaling, the REF approach is not dependent on the availability of primary cells. Here, we review the REF approach and compare it with other IVIVE approaches such as the relative activity factor approach and physiological scaling. For each of these scaling approaches, we review their underlying principles, assumptions, methodology, predictive performance, as well as advantages and limitations. Finally, we discuss current gaps in IVIVE of transporter-based CL and TC and propose possible reasons for these gaps as well as areas to investigate to bridge these gaps.


Assuntos
Proteínas de Membrana Transportadoras , Modelos Biológicos , Transporte Biológico , Interações Medicamentosas , Humanos , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Taxa de Depuração Metabólica
10.
Drug Metab Rev ; 54(3): 299-317, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35762758

RESUMO

On behalf of the team I am pleased to present the second annual 'novel insights into drug transporter sciences review' focused on peer-reviewed articles that were published in the year 2021. In compiling the articles for inclusion, preprints available in 2021 but officially published in 2022 were considered to be in scope. To support this review the contributing authors independently selected one or two articles that were thought to be impactful and of interest to the broader research community. A similar approach as published last year was adopted whereby key observations, methods and analysis of each paper is concisely summarized in the synopsis followed by a commentary highlighting the impact of the paper in understanding drug transporters' role in drug disposition. As the goal of this review is not to provide a comprehensive overview of each paper but rather highlight important findings that are well supported by the data, the reader is encouraged to consult the original articles for additional information. Further, and keeping in line with the goals of this review, it should be noted that all authors actively contributed by writing synopsis and commentary for individual papers and no attempt was made to standardize language or writing styles. In this way, the review article is reflective of not only the diversity of the articles but also that of the contributors. I extend my thanks to the authors for their continued support and also welcome Diane Ramsden and Pallabi Mitra as contributing authors for this issue (Table 1).[Table: see text].


Assuntos
Proteínas de Membrana Transportadoras , Preparações Farmacêuticas , Humanos
11.
Drug Metab Dispos ; 50(7): 980-988, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35545257

RESUMO

Quantitative assessment of hepatic clearance (CLH) of drugs is critical to accurately predict human dose and drug-drug interaction (DDI) liabilities. This is challenging for drugs that involve complex transporter-enzyme interplay. In this study, we demonstrate this interplay in the CLH and DDI effect in the presence of CYP3A4 perpetrator for pevonedistat using both the conventional clearance model (CCM) and the extended clearance model (ECM). In vitro metabolism and hepatocyte uptake data showed that pevonedistat is actively transported into the liver via multiple uptake transporters and metabolized predominantly by CYP3A4 (88%). The active uptake clearance (CLact,inf) and passive diffusion clearance (CLdiff,inf) were 21 and 8.7 ml/min/kg, respectively. The CLact,inf was underpredicted as Empirical Scaling Factor of 13 was needed to recover the in vivo plasma clearance (CLplasma). Both CCM and ECM predicted CLplasma of pevonedistat reasonably well (predicted CLplasma of 30.8 (CCM) and 32.1 (ECM) versus observed CLplasma of 32.2 ml/min/kg). However, both systemic and liver exposures in the presence of itraconazole were well predicted by ECM but not by CCM (predicted pevonedistat plasma area under the concentration-time curve ratio (AUCR) 2.73 (CCM) and 1.23 (ECM))., The ECM prediction is in accordance with the observed clinical DDI data (observed plasma AUCR of 1.14) that showed CYP3A4 inhibition did not alter pevonedistat exposure systemically, although ECM predicted liver AUCR of 2.85. Collectively, these data indicated that the hepatic uptake is the rate-determining step in the CLH of pevonedistat and are consistent with the lack of systemic clinical DDI with itraconazole. SIGNIFICANCE STATEMENT: In this study, we successfully demonstrated that the hepatic uptake is the rate-determining step in the CLH of pevonedistat. Both the conventional and extended clearance models predict CLplasma of pevonedistat well however, only the ECM accurately predicted DDI effect in the presence of itraconazole, thus providing further evidence for the lack of DDI with CYP3A4 perpetrators for drugs that involve complex transporter-enzyme interplay as there are currently not many examples in the literature except prototypical OATP substrate drugs.


Assuntos
Citocromo P-450 CYP3A , Itraconazol , Ciclopentanos , Citocromo P-450 CYP3A/metabolismo , Humanos , Itraconazol/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Pirimidinas
12.
Drug Metab Rev ; 53(3): 321-349, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34346798

RESUMO

Drug Metabolism Reviews has an impressive track record of providing scientific reviews in the area of xenobiotic biotransformation over 47 years. It has consistently proved to be resourceful to many scientists from pharmaceutical industry, academia, regulatory agencies working in diverse areas including enzymology, pharmacology, pharmacokinetics, and toxicology. Over the last 5 years Drug metabolism Reviews has annually published an industry commentary aimed to highlight novel insights and approaches that have made significant impacts on the field of biotransformation (led by Cyrus Khojasteh). We hope to continue this tradition by providing an overview of advances made in the field of drug transporters during 2020. The field of drug transporters is rapidly evolving as they play an essential role in drug absorption, distribution, clearance, and elimination. In this review, we have selected outstanding drug transporter articles that have significantly contributed to moving forward the field of transporter science with respect to translation and improved understanding of diverse aspects including uptake clearance, clinical biomarkers, induction, proteomics, emerging transporters, and tissue targeting. The theme of this review consists of a synopsis that summarizes each article followed by our commentary. The objective of this work is not to provide a comprehensive review but rather to exemplify novel insights and state-of-the-art highlights of recent research that have advanced our understanding of drug transporters in drug disposition. We are hopeful that this effort will prove useful to the scientific community and as such request feedback, and further extend an invitation to anyone interested in contributing to future reviews.


Assuntos
Proteínas de Membrana Transportadoras , Xenobióticos , Transporte Biológico , Biotransformação , Interações Medicamentosas , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas
13.
Drug Metab Dispos ; 49(4): 314-321, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33472814

RESUMO

The mechanistic understanding of bile salt disposition is not well established in suspension human hepatocytes (SHH) because of the limited information on the expression and function of bile salt export protein (BSEP) in this system. We investigated the transport function of BSEP in SHH using a method involving in situ biosynthesis of bile salts from their precursor bile acids, cholic acid (CA) and chenodeoxycholic acid (CDCA). Our data indicated that glycine- and taurine-conjugated CA and CDCA were generated efficiently and transported out of hepatocytes in a concentration- and time-dependent manner. We also observed that the membrane protein abundance of BSEP was similar between SHH and sandwich-cultured human hepatocytes. Furthermore, known cholestatic agents significantly inhibited G-CA and G-CDCA efflux in SHH. Interestingly, cyclosporine A, troglitazone, itraconazole, loratadine, and lovastatin inhibited G-CA efflux more potently than G-CDCA efflux (3- to 5-fold). Because of these significant differential effects on G-CA and G-CDCA efflux inhibition, we determined the IC50 values of troglitazone for G-CA (9.9 µM) and for G-CDCA (43.1 µM) efflux. The observed discrepancy in the IC50 was attributed to the fact that troglitazone also inhibits organic anion transporting polypeptides and Na+/taurocholate cotransporting polypeptide in addition to BSEP. The hepatocyte uptake study suggested that both active uptake and passive diffusion contribute to the liver uptake of CA, whereas CDCA primarily undergoes passive diffusion into the liver. In summary, these data demonstrated the expression and function of BSEP and its major role in transport of bile salts in cryopreserved SHH. SIGNIFICANCE STATEMENT: BSEP transport function and protein abundance was evident in SHH in the present study. The membrane abundance of BSEP protein was similar between SHH and sandwich-cultured human hepatocytes. The study also illustrated the major role of BSEP relative to basolateral MRP3 and MRP4 in transport of bile salts in SHH. Understanding of BSEP function in SHH may bolster the utility of this platform in mechanistic understanding of bile salt disposition and potentially in the assessment of drugs for BSEP inhibition.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/biossíntese , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Células Cultivadas , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
14.
Mol Pharm ; 16(8): 3569-3576, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31194565

RESUMO

The human apical sodium-dependent bile acid transporter (hASBT; SLC10A2) is responsible for the reclamation of bile acids from the intestinal lumen, providing a primary mechanism for bile acid and cholesterol homeostasis. However, the regulation of hASBT at the post-translational level is not well understood. In the present study, we investigated the role of Src family kinases (SFKs) and protein tyrosine phosphatases (PTPs) in the regulation of surface expression and function of hASBT. Inhibition of Src family kinases, via treatment with PP2, significantly reduced hASBT function, while the inhibition of PTPs by activated orthovanadate significantly induced function. Src family kinase inhibition by PP2 was associated with a concomitant decrease in maximum transport velocity (Jmax) correlated with a decrease in hASBT surface expression. Interestingly, PP2-mediated suppression of hASBT protein expression was rescued by the proteasome inhibitor MG132, suggesting that dephosphorylation impacts protein stability with the subsequent proteasome-dependent degradation of hASBT. Consequently, single-point mutations were introduced at five intracellular tyrosine residues: Y148F, Y216F, Y308F, Y311F, and Y337F. Although all mutants had significantly altered hASBT function without changes in total cellular expression, sequential tyrosine mutations at the five residues above rendered hASBT nonfunctional with diminished protein expression. Furthermore, orthovanadate-induced transport activity of single-point tyrosine mutants suggested a role for multiple tyrosine residues in the regulation of hASBT function and membrane expression. Overall, our data confirms that tyrosine phosphorylation mediated by Src family kinases (SFKs), in particular, regulates surface expression, function, and stability of hASBT.


Assuntos
Membrana Celular/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Tirosina/metabolismo , Animais , Células COS , Células CACO-2 , Chlorocebus aethiops , Humanos , Mucosa Intestinal/metabolismo , Leupeptinas/farmacologia , Mutagênese Sítio-Dirigida , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Mutação Puntual , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , Proteólise/efeitos dos fármacos , Pirimidinas/farmacologia , Simportadores/genética , Tirosina/genética , Vanadatos/farmacologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
15.
Clin Pharmacol Ther ; 104(5): 890-899, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30091177

RESUMO

This white paper provides updated International Transporter Consortium (ITC) recommendations on transporters that are important in drug development following the 3rd ITC workshop. New additions include prospective evaluation of organic cation transporter 1 (OCT1) and retrospective evaluation of organic anion transporting polypeptide (OATP)2B1 because of their important roles in drug absorption, disposition, and effects. For the first time, the ITC underscores the importance of transporters involved in drug-induced vitamin deficiency (THTR2) and those involved in the disposition of biomarkers of organ function (OAT2 and bile acid transporters).


Assuntos
Desenvolvimento de Medicamentos/métodos , Moduladores de Transporte de Membrana/farmacologia , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/metabolismo , Farmacocinética , Animais , Interações Medicamentosas , Humanos , Moduladores de Transporte de Membrana/metabolismo , Modelos Biológicos , Medição de Risco
16.
Mol Pharm ; 15(10): 4677-4688, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29996058

RESUMO

The use of in vitro data for the quantitative prediction of transporter-mediated clearance is critical. Central to this evaluation is the use of hepatocytes, since they contain the full complement of transporters and metabolic enzymes. In general, uptake clearance (CLuptake) is evaluated by measuring the appearance of compound in the cell. Passive clearance (CLpd) is often determined by conducting parallel studies at 4 °C or by attempting to saturate uptake pathways. Both approaches have their limitations. Recent studies have proposed the use of Rifamycin-SV (RFV) as a pan-inhibitor of hepatic uptake pathways. In our studies, we confirm that transport activity of all major hepatic uptake transporters is inhibited significantly by RFV at 1 mM (OATP1B1, 1B3, and 2B1 = NTCP (80%), OCT1 (65%), OAT2 (60%)). Under these incubation conditions, we found that the free intracellular concentration of RFV is ∼175 µM and that several major CYPs and UGTs can be reversibly inhibited. Using this approach, we also determined CLuptake and CLpd of nine known OATP substrates across three different lots of human hepatocytes. The scaling factors generated for these compounds at 37 °C with RFV and 4 °C were found to be similar. The CLpd of passively permeable compounds like metoprolol and semagacestat were found to be higher at 37 °C compared to 4 °C, indicating a temperature effect on these compounds. In addition, our data also suggests that incorporation of medium concentrations into CLuptake and CLpd calculations may be critical for highly protein bound and highly lipophilic drugs. Overall, our data indicate that RFV, instead of 4 °C, can be reliably used to measure CLuptake and CLpd of drugs.


Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , Rifamicinas/metabolismo , Alanina/análogos & derivados , Alanina/metabolismo , Azepinas/metabolismo , Transporte Biológico , Humanos , Cinética , Metoprolol/metabolismo
17.
Biochim Biophys Acta Biomembr ; 1860(3): 645-653, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29198943

RESUMO

The human apical sodium-dependent bile acid transporter, hASBT/SLC10A2, plays a central role in cholesterol homeostasis via the efficient reabsorption of bile acids from the distal ileum. hASBT has been shown to self-associate in higher order complexes, but while the functional role of endogenous cysteines has been reported, their implication in the oligomerization of hASBT remains unresolved. Here, we determined the self-association architecture of hASBT by site-directed mutagenesis combined with biochemical, immunological and functional approaches. We generated a cysteine-less form of hASBT by creating point mutations at all 13 endogenous cysteines in a stepwise manner. Although Cysless hASBT had significantly reduced function correlated with lowered surface expression, it featured an extra glycosylation site that facilitated its differentiation from wt-hASBT on immunoblots. Decreased protein expression was associated with instability and subsequent proteasome-dependent degradation of Cysless hASBT protein. Chemical cross-linking of wild-type and Cysless species revealed that hASBT exists as an active dimer and/or higher order oligomer with apparently no requirement for endogenous cysteine residues. This was further corroborated by co-immunoprecipitation of differentially tagged (HA-, Flag-) wild-type and Cysless hASBT. Finally, Cysless hASBT exhibited a dominant-negative effect when co-expressed with wild-type hASBT which validated heterodimerization/oligomerization at the functional level. Combined, our data conclusively demonstrate the functional existence of hASBT dimers and higher order oligomers irrespective of cysteine-mediated covalent bonds, thereby providing greater understanding of its topological assembly at the membrane surface.


Assuntos
Cisteína/química , Transportadores de Ânions Orgânicos Dependentes de Sódio/química , Simportadores/química , Sequência de Aminoácidos , Animais , Transporte Biológico , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Cistina/química , Genes Dominantes , Glicosilação , Humanos , Imunoprecipitação , Mutagênese Sítio-Dirigida , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Fragmentos de Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Simportadores/genética , Ácido Taurocólico/metabolismo
18.
Drug Metab Dispos ; 45(6): 692-705, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28336578

RESUMO

Typically, concentration-response curves are based upon nominal inducer concentrations for in-vitro-to-in-vivo extrapolation of CYP3A4 induction. The limitation of this practice is that it assumes the hepatocyte culture model is a static system. We assessed whether correcting for: 1) changes in perpetrator concentration in the induction medium during the incubation period, 2) perpetrator binding to proteins in the induction medium, and 3) nonspecific binding of perpetrator can improve the accuracy of CYP3A4 induction predictions. Of the seven compounds used in this evaluation, significant parent loss and nonspecific binding were observed for rifampicin (29.3-38.3%), pioglitazone (64.3-78.6%), and rosiglitazone (57.1-75.5%). As a result, the free measured EC50 values (EC50u) of pioglitazone, rosiglitazone, and rifampicin were significantly lower than the nominal EC50 values. In general, the accuracy of the induction predictions, using multiple static models, improved when corrections were made for measured medium concentrations, medium protein binding, and nonspecific binding of the perpetrator, as evidenced by 18-29% reductions in the root mean square error. The relative induction score model performed better than the basic static and mechanistic static models, resulting in lower prediction error and no false-positive or false-negative predictions. However, even when the EC50u value was used, the induction prediction for bosentan, which is a substrate of organic anion transporter proteins, was overpredicted by approximately 2-fold. Accounting for the ratio of unbound intracellular concentrations to unbound medium concentrations (Kpuu,in vitro) (0.5-7.5) and the predicted multiple-dose Kpuu,in vivo (0.6) for bosentan resulted in induction predictions within 35% of the observed interaction.


Assuntos
Indutores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/biossíntese , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Criopreservação , Citocromo P-450 CYP3A/metabolismo , Indutores do Citocromo P-450 CYP3A/farmacocinética , Relação Dose-Resposta a Droga , Interações Medicamentosas , Indução Enzimática/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Cinética , Pioglitazona , Rifampina/farmacocinética , Rifampina/farmacologia , Rosiglitazona , Tiazolidinedionas/farmacocinética , Tiazolidinedionas/farmacologia
19.
Drug Metab Dispos ; 44(12): 1910-1919, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27655038

RESUMO

Previously we assessed the inductive response of prototypical inducers in hepatocyte monocultures and the long-term coculture model HepatoPac using cryopreserved hepatocytes from the same donors. We noted that the rifampicin EC50 generated using the HepatoPac model corresponded better to the EC50 based on clinical data compared with data generated in the monoculture system. We postulated that there may be differences in the functioning of uptake transporters between the two systems that may have led to the EC50 difference. In this study, we characterized the functional activity of multiple uptake transporters in the two systems using cryopreserved hepatocytes from the same donors. Our data suggest that uptake transporter activity is higher in HepatoPac compared with the monoculture system. As a follow up to this study, we measured the intracellular concentrations of rifampicin and bosentan, which are known substrates of uptake transporters; we observed significantly higher intracellular concentrations of both compounds in HepatoPac relative to the monoculture system. This finding equated to lower cytochrome P450 isoform 3A4 (CYP3A4) EC50 values in the HepatoPac system compared with the monoculture system for both mRNA and activity. In parallel, no significant EC50 shift was observed for carbamazepine and phenytoin, which are not known to be substrates of uptake transporters. Our data suggest that next generation liver models such as HepatoPac may be a useful in vitro tool to quantitatively predict drug-drug interactions when it is known that the perpetrator is also a substrate of drug transporters.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Hepatócitos/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Células Cultivadas , Técnicas de Cocultura/métodos , Criopreservação/métodos , Indutores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas/fisiologia , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , RNA Mensageiro/metabolismo , Rifampina/farmacologia
20.
Biochem J ; 459(2): 301-12, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24498857

RESUMO

The sodium/bile acid co-transporter ASBT [apical sodium-dependent bile acid transporter; SLC10A2 (solute carrier family 10 member 2)] plays a key role in the enterohepatic recycling of the bile acids and indirectly contributes to cholesterol homoeostasis. ASBT inhibitors reportedly lower plasma triglyceride levels and increase HDL (high-density lipoprotein) cholesterol levels. RSV (resveratrol), a major constituent of red wine, is known to lower LDL (low-density lipoprotein) cholesterol levels, but its mechanism of action is still unclear. In the present study, we investigated the possible involvement of ASBT in RSV-mediated cholesterol-lowering effects. We demonstrate that RSV inhibits ASBT protein expression and function via a SIRT1 (sirtuin 1)-independent mechanism. The effect was specific to ASBT since other transporters involved in cholesterol homoeostasis, NTCP (SLC10A1), OSTα (SLC51A) and ABCG1 (ATP-binding cassette G1), remained unaffected. ASBT inhibition by RSV was reversed by proteasome inhibitors (MG-132 and lactacystin) and the ubiquitin inhibitor LDN57444, suggesting involvement of the ubiquitin-proteasome pathway. Immunoprecipitation revealed high levels of ubiquitinated ASBT after RSV treatment. Phosphorylation at Ser335 and Thr339 was shown previously to play a role in proteosomal degradation of rat ASBT. However, mutation at corresponding residues in rat ASBT revealed that phosphorylation does not contribute to RSV-mediated degradation of ASBT. Combined, our data indicate that RSV promotes ASBT degradation via the ubiquitin-proteasome pathway without requiring phosphorylation. We conclude that regulation of ASBT expression by RSV may have clinical relevance with regard to the observed cholesterol-lowering effects of RSV.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Proteólise/efeitos dos fármacos , Estilbenos/farmacologia , Simportadores/metabolismo , Animais , Linhagem Celular , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Fosforilação , Transporte Proteico/efeitos dos fármacos , Resveratrol , Sirtuína 1/genética , Sirtuína 1/metabolismo , Simportadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...