Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(39): 52856-52866, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39174350

RESUMO

Integrating structural colors and conductivity into aqueous inks has the potential to revolutionize wearable electronics, providing flexibility, sustainability, and artistic appeal to electronic components. This study aims to introduce bioinspired color engineering to conductive aqueous inks. Our self-assembly approach involves mixing poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with sulfonic acid-modified polystyrene (sPS) colloids to generate non-iridescent structural colors in the inks. This spontaneous structural coloration occurs because PEDOT:PSS and sPS colloids can self-assemble into core-shell structures and reversibly cluster into photonic aggregates of maximally random jammed packing within the aqueous environment, as demonstrated by small-angle X-ray scattering. Dissipative particle dynamics simulation confirms that the self-assembly aggregation of PEDOT:PSS chains and sPS colloids can be manipulated by the polymer-colloid interactions. Utilizing the finite-difference time-domain method, we demonstrate that the photonic aggregates of the core-shell colloids achieve close to maximum jammed packing, making them suitable for producing vivid structural colors. These versatile conductive inks offer adjustable color saturation and conductivity, with conductivity levels reaching 36 S cm-1 through the addition of polyethylene glycol oligomer, while enhanced water resistance and mechanical stability are achieved by doping with a cross-linker, poly(ethylene glycol) diglycidyl ether. With these unique features, the inks can create flexible, patterned circuits through processes like coating, writing, and dyeing on large areas, providing eco-friendly, visually appealing colors for customizable, stylish, comfortable, and wearable electronic devices.

2.
ACS Appl Mater Interfaces ; 11(42): 38625-38632, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31571473

RESUMO

An n-Cu2O layer formed a high-quality buried junction with p-Cu2O to increase the photovoltage and thus to shift the turn-on voltage positively. Mott-Schottky measurements confirmed that the improvement benefited from a positive shift in flat-band potential. The obtained extremely positive onset potential, 0.8 VRHE in n-Cu2O/AuAg/p-Cu2O, is comparable with measurements from water reduction catalysts. The AuAg alloy sandwiched between the homojunction of n-Cu2O and p-Cu2O improved the photocatalytic performance. This alloy both served as an electron relay and promoted electron-hole pair generation in nearby semiconductors; the charge transfer between n-Cu2O and p-Cu2O in the sandwich structure was measured with X-ray absorption spectra. The proposed sandwich structure can be considered as a new direction for the design of efficient solar-related devices.

3.
ACS Macro Lett ; 4(12): 1341-1345, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35614779

RESUMO

We study the percolation problem in a binary phase-separating polymer mixture. By well-designed experiments, we can delineate the percolation line on the phase diagram with sufficient accuracy. Our experiments show that the percolation thresholds start from the random percolation limit (Φ âˆ¼ 0.15) located near spinodal point at T → Tc and then converge toward the geometric coalescence limit (Φ âˆ¼ 0.36) with an increase in the quench depth. This apparent percolation difficulty comes about largely from the Rayleigh instability accompanied by large-amplitude, short-wavelength fluctuations during the spinodal decomposition at deeper quench depth. As a result, the broken "rigid" domains tend to pack closely, and the so-called droplet spinodal decomposition occurs. On the other hand, we observe that, between the selectively attractive walls, the surface-drying percolating phase will break up into droplets prematurely, thereby shifting its percolation line rather considerably. To our knowledge, such an effect is not yet predicted by theory or simulation.

4.
ACS Macro Lett ; 1(5): 646-650, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35607079

RESUMO

Fibrillar networks and spherulite assemblies are the two most frequently observed textures in weak gelation of crystallizable linear polymers. We find such two textures in response to the kinetic distinction between instability/spinodal and metastability/nucleation of the polymer crystallization and prove the morphogenetic transition in between. Moreover, it comes as a surprise when such a transition exhibits a spinodal singularity that reveals a mean-field-like "mesoscopic" phase transition behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA