Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Omega ; 6(31): 20530-20548, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34395999

RESUMO

In this work, a set of density-functional tight-binding (DFTB) parameters for the Zr-Zr, Zr-O, Y-Y, Y-O, and Zr-Y interactions was developed for bulk and surface simulations of ZrO2 (zirconia), Y2O3 (yttria), and yttria-stabilized zirconia (YSZ) materials. The parameterization lays the ground work for realistic simulations of zirconia-, yttria-, and YSZ-based electrolytes in solid oxide fuel cells and YSZ-based catalysts on long timescales and relevant size scales. The parameterization was validated for the zirconia and yttria polymorphs observed under standard conditions based on density functional theory calculations and experimental data. Additionally, we performed DFTB-based molecular dynamics (MD) simulations to compute structural and vibrational properties of these materials. The results show that the parameters can give a qualitatively correct phase ordering of zirconia, where the tetragonal phase is more stable than the cubic phase at a lower temperature. The lattice parameters are only slightly overestimated by 0.05-0.1 Å (2% error), still within the typical accuracy of first-principles methods. Additionally, the MD results confirm that zirconia and yttria phases are stable against transformations under standard conditions. The parameterization also predicts that vibrational spectra are within the range of 100-1000 cm-1 for zirconia and 100-800 cm-1 for yttria, which is in good agreement with predictions both from full quantum mechanics and a recently developed classical force field. To further demonstrate the advantage of the developed DFTB parameters in terms of computational resources, we conducted DFTB/MD simulations of the YSZ4 and YS12 models containing approximately 750 atoms.

2.
J Phys Chem A ; 125(10): 2184-2196, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33645988

RESUMO

Density-functional tight-binding (DFTB) parameters are presented for the simulation of the bulk phases of zirconium. Electronic parameters were obtained using a band structure fitting strategy, while two-center repulsive potentials were created by particle swarm optimization. As objective functions for the repulsive potential fitting, we employed the Birch-Murnaghan equations of state for hexagonal close-packed (HCP), body-centered cubic (BCC) and ω phases of Zr from density-functional theory (DFT). When fractional atomic coordinates are not allowed to change in the generation of the equation-of-state curves, long-range repulsive DFTB potentials are able to almost perfectly reproduce equilibrium structures, relative DFT energies of the bulk phases, and bulk moduli. However, the same potentials lead to artifacts in the DFTB potential energy surfaces when atom positions in the unit cell are allowed to fully relax during the change of unit cell parameters. Conventional short-range repulsive DFTB potentials, while inferior in their ability to reproduce DFT bulk energetics, are able to correctly reproduce the qualitative shape of the DFT potential energy surfaces, including the location of global minima, and can therefore be considered more transferable.

3.
ACS Omega ; 5(12): 6862-6871, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32258922

RESUMO

Carbonaceous or oxy-carbon species are intermediates formed during C x H y combustion on a Pt n /Al2O3 catalyst, which contain carbon, hydrogen, and oxygen atoms. The accumulation of the carbonaceous species, arguably, leads to catalytic deactivation; therefore, their removal is of importance. As the diffusion process is occasionally the rate-determining step in the growth of carbonaceous species, the present study aims to reveal the diffusion mechanisms. The free energy barriers of acetate, formate, and methoxy diffusion on the (100)-γ-Al2O3 surface were evaluated through extensive metadynamics simulations at the density-functional tight-binding level. The present work deduces that each adopted carbonaceous species exhibits different diffusion mechanisms and supports experimental evidence that the acetate species exhibits the slowest diffusivity among the adopted carbonaceous species.

4.
Nat Commun ; 11(1): 843, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071299

RESUMO

Water confined within one-dimensional (1D) hydrophobic nanochannels has attracted significant interest due to its unusual structure and dynamic properties. As a representative system, water-filled carbon nanotubes (CNTs) are generally studied, but direct observation of the crystal structure and proton transport is difficult for CNTs due to their poor crystallinity and high electron conduction. Here, we report the direct observation of a unique water-cluster structure and high proton conduction realized in a metal-organic nanotube, [Pt(dach)(bpy)Br]4(SO4)4·32H2O (dach: (1R, 2R)-(-)-1,2-diaminocyclohexane; bpy: 4,4'-bipyridine). In the crystalline state, a hydrogen-bonded ice nanotube composed of water tetramers and octamers is found within the hydrophobic nanochannel. Single-crystal impedance measurements along the channel direction reveal a high proton conduction of 10-2 Scm-1. Moreover, fast proton diffusion and continuous liquid-to-solid transition are confirmed using solid-state 1H-NMR measurements. Our study provides valuable insight into the structural and dynamical properties of confined water within 1D hydrophobic nanochannels.

5.
Phys Chem Chem Phys ; 22(1): 97-106, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31803895

RESUMO

We investigated the atomistic and dynamical mechanism of polaron formation in methylammonium lead iodide perovskite (MAPbI3), which is a representative perovskite solar cell absorber, through the quantum mechanical molecular dynamics simulations. The simulations were conducted on the spatial scale of several nanometres, which can describe charge localization and the associated structural deformation, using the divide-and-conquer-type density-functional tight-binding method, which enables a quantum chemical treatment of systems comprising thousands of atoms. We found that both the structural parts of MAPbI3, namely, the inorganic framework (PbI3-) and the MA cations, involve the structural deformation associated with polaron formation. We elucidated that in the process of polaron formation, charge localization is invoked by thermal structural fluctuation, and a further structural deformation is caused by the relaxation of the charge carrier. Finally, importance of the two structural parts, PbI3- and MA, was examined from the energetical viewpoint.

6.
Angew Chem Int Ed Engl ; 58(40): 14202-14207, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31359550

RESUMO

Aqueous Na- or K-ion batteries could virtually eliminate the safety and cost concerns raised from Li-ion batteries, but their widespread applications have generally suffered from narrow electrochemical potential window (ca. 1.23 V) of aqueous electrolytes that leads to low energy density. Herein, by exploring optimized eutectic systems of Na and K salts with asymmetric imide anions, we discovered, for the first time, room-temperature hydrate melts for Na and K systems, which are the second and third alkali metal hydrate melts reported since the first discovery of Li hydrate melt by our group in 2016. The newly discovered Na- and K- hydrate melts could significantly extend the potential window up to 2.7 and 2.5 V (at Pt electrode), respectively, owing to the merit that almost all water molecules participate in the Na+ or K+ hydration shells. As a proof-of-concept, a prototype Na3 V2 (PO4 )2 F3 |NaTi2 (PO4 )3 aqueous Na-ion full-cell with the Na-hydrate-melt electrolyte delivers an average discharge voltage of 1.75 V, that is among the highest value ever reported for all aqueous Na-ion batteries.

7.
Angew Chem Int Ed Engl ; 58(24): 8024-8028, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30951223

RESUMO

Alkaline metals are an ideal negative electrode for rechargeable batteries. Forming a fluorine-rich interphase by a fluorinated electrolyte is recognized as key to utilizing lithium metal electrodes, and the same strategy is being applied to sodium metal electrodes. However, their reversible plating/stripping reactions have yet to be achieved. Herein, we report a contrary concept of fluorine-free electrolytes for sodium metal batteries. A sodium tetraphenylborate/monoglyme electrolyte enables reversible sodium plating/stripping at an average Coulombic efficiency of 99.85 % over 300 cycles. Importantly, the interphase is composed mainly of carbon, oxygen, and sodium elements with a negligible presence of fluorine, but it has both high stability and extremely low resistance. This work suggests a new direction for stabilizing sodium metal electrodes via fluorine-free interphases.

8.
Chem Rec ; 19(4): 746-757, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30462370

RESUMO

The density-functional tight-binding (DFTB) method is one of the useful quantum chemical methods, which provides a good balance between accuracy and computational efficiency. In this account, we reviewed the basis of the DFTB method, the linear-scaling divide-and-conquer (DC) technique, as well as the parameterization process. We also provide some refinement, modifications, and extension of the existing parameters that can be applicable for lithium-ion battery systems. The diffusion constants of common electrolyte molecules and LiTFSA salt in solution have been estimated using DC-DFTB molecular dynamics simulation with our new parameters. The resulting diffusion constants have good agreement to the experimental diffusion constants.

9.
J Mol Model ; 24(10): 288, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242484

RESUMO

We present a computational study of convergence properties of vibrational IR and Raman spectra for a series of increasingly long units of polyethylene, cis- and trans-polyacetylenes, and polyynes. Convergent behavior to the spectra of infinitely long polymers was observed in all cases when chains reached lengths of approximately 60 carbon atoms, both with respect to the positions of the bands and to their intensities. The vibrational spectra of longer chains are practically indistinguishable. The convergence rate depends on the degree of the π conjugation in a studied system: Vibrational spectra for oligoethylenes converge noticeably faster than the spectra for the conjugated systems. The slowest convergence is observed for skeletal motions of the oligomer chains, which may require more than a hundred carbon atoms in the chain to show deviations smaller than 1 cm-1 to the corresponding solid-state calculations. The results suggest that the boundary between the properties of finite and infinite molecular systems fades away for a surprisingly small number of atoms.

10.
J Phys Chem B ; 122(9): 2600-2609, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29433319

RESUMO

Superconcentrated electrolyte solutions are receiving increasing attention as a novel class of liquid electrolyte for secondary batteries because of their unusual and favorable characteristics, which arise from a unique solution structure with a very small number of free solvent molecules. The present theoretical study investigates the concentration dependence of the structural and dynamical properties of these electrolyte solutions for Na-ion batteries using large-scale quantum molecular dynamics simulations. Microscopic analysis of the dynamical properties of Na+ ions reveals that ligand (solvent/anion) exchange reactions, an alternative diffusion pathway for Na+ ions, are responsible for carrier ion diffusion in the superconcentrated conditions.

11.
J Phys Chem A ; 122(1): 33-40, 2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29227657

RESUMO

The structural, dynamical, and energetic properties of the excess proton in ice were studied using density-functional tight-binding molecular dynamics simulations. The ice systems investigated herein consisted of low-density hexagonal and cubic crystalline variants (ice Ih and Ic) and high-density structures (ice III and melted ice VI). Analysis of the temperature dependence of radial distribution function and bond order parameters served to characterize the distribution and configuration of hundreds of water molecules in a unit cell. We confirmed that ice Ih and Ic possess higher hexagonal symmetries than ice III and melted ice VI. The estimated Grotthuss shuttling diffusion coefficients in ice were larger than that of liquid water, indicating a slower proton diffusion process in high-density structures than in low-density systems. The energy barriers calculated on the basis of the Arrhenius plot of diffusion coefficients were in reasonable agreement with experimental measurement for ice Ih. Furthermore, the energy barriers for high-density structures were several times larger than those of low-density systems. The simulation results were likely related to the suppression of proton transfer in disordered water configurations, in particular, ice with low hexagonal symmetry.

12.
J Chem Theory Comput ; 12(1): 53-64, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26587758

RESUMO

We present a novel density-functional tight-binding (DFTB) parametrization toolkit developed to optimize the parameters of various DFTB models in a fully automatized fashion. The main features of the algorithm, based on the particle swarm optimization technique, are discussed, and a number of initial pilot applications of the developed methodology to molecular and solid systems are presented.


Assuntos
Modelos Teóricos , Algoritmos , Peróxido de Hidrogênio/química , Metanol/química , Silício/química
13.
Phys Chem Chem Phys ; 15(11): 3725-35, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23388654

RESUMO

We present a detailed analysis of the factors influencing the formation of epoxide and ether groups in graphene nanoflakes using conventional density functional theory (DFT), the density-functional tight-binding (DFTB) method, π-Hückel theory, and graph theoretical invariants. The relative thermodynamic stability associated with the chemisorption of oxygen atoms at various positions on hexagonal graphene flakes (HGFs) of D(6h)-symmetry is determined by two factors - viz. the disruption of the π-conjugation of the HGF and the geometrical deformation of the HGF structure. The thermodynamically most stable structure is achieved when the former factor is minimized, and the latter factor is simultaneously maximized. Infrared (IR) spectra computed using DFT and DFTB reveal a close correlation between the relative thermodynamic stabilities of the oxidized HGF structures and their IR spectral activities. The most stable oxidized structures exhibit significant IR activity between 600 and 1800 cm(-1), whereas less stable oxidized structures exhibit little to no activity in this region. In contrast, Raman spectra are found to be less informative in this respect.

14.
J Phys Chem A ; 113(43): 11866-81, 2009 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19778029

RESUMO

In this work, we derive and test a new automatized strategy to construct repulsive potentials for the self-consistent charge density functional tight-binding (SCC-DFTB) method. This approach allows one to explore the parameter space in a systematic fashion in order to find optimal solutions. We find that due to the limited flexibility of the SCC-DFTB electronic part, not all properties can be optimized simultaneously. For example, the optimization of heats of formation is in conflict with the optimization of vibrational frequencies. Therefore, a special parametrization for vibrational frequencies is derived. It is shown that the performance of SCC-DFTB can be significantly improved using a more elaborate fitting strategy. A new fit for C and H is presented, which results in an average error of 2.6 kcal/mol for heats of formations for a large set of hydrocarbons, indicating that the performance of SCC-DFTB can be systematically improved also for other elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...