Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Prog ; 106(1): 368504231157142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36823966

RESUMO

A flexible, hydrophobic, and multilayered poly(vinyl alcohol) (PVA) film evolved to replace a commercially available nonbiodegradable easy seal-paper (ES-PAPER) sealing film. First, environmentally friendly fillers, such as cellulose nanocrystals (CNCs) or cellulose nanofibers (CNFs), were added to produce PVA + CNC/CNF composites via blade coating and solution casting to strengthen the mechanical properties of PVA. Subsequently, biodegradable and hydrophobic materials, such as poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) and neat PLA, were added to prepare multilayered PEG-PLA and PLA hydrophobic composites using double-sided solution casting. The hydrophobicity of PVA was enhanced through heat treatment. Finally, the mechanical properties of the as-prepared PVA film were compared with those of a commercially available ES-PAPER sealing film. PVA + CNC/CNF composites exhibit excellent transparency and mechanical properties, whereas PVA + CNCs 3.0 wt% have the highest Young's modulus and tensile strength, which are, respectively, 3% and 96% higher than the Young's modulus and tensile strength of an ES-PAPER sealing film. With regard to strain at break, the prepared PVA film also exhibited a value many times larger than that of the ES-PAPER sealing film because of good filler dispersibility, which significantly enhanced the durability of the sealing film.

2.
Polymers (Basel) ; 13(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34960998

RESUMO

An environmentally friendly, hydrophobic polyvinyl alcohol (PVA) film was developed as an alternative to commercial straws for mitigating the issue of plastic waste. Nontoxic and biodegradable cellulose nanocrystals (CNCs) and nanofibers (CNFs) were used to prepare PVA nanocomposite films by blade coating and solution casting. Double-sided solution casting of polyethylene-glycol-poly(lactic acid) (PEG-PLA) + neat PLA hydrophobic films was performed, which was followed by heat treatment at different temperatures and durations to hydrophobize the PVA composite films. The hydrophobic characteristics of the prepared composite films and a commercial straw were compared. The PVA nanocomposite films exhibited enhanced water vapor barrier and thermal properties owing to the hydrogen bonds and van der Waals forces between the substrate and the fillers. In the sandwich-structured PVA-based hydrophobic composite films, the crystallinity of PLA was increased by adjusting the temperature and duration of heat treatment, which significantly improved their contact angle and water vapor barrier. Finally, the initial contact angle and contact duration (at the contact angle of 20°) increased by 35% and 40%, respectively, which was a significant increase in the service life of the biodegradable material-based straw.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...