Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(6): 2270-2276, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35225620

RESUMO

Understanding the Coulomb interactions between two-dimensional (2D) materials and adjacent ions/impurities is essential to realizing 2D material-based hybrid devices. Electrostatic gating via ionic liquids (ILs) has been employed to study the properties of 2D materials. However, the intrinsic interactions between 2D materials and ILs are rarely addressed. This work studies the intersystem Coulomb interactions in IL-functionalized InSe field-effect transistors by displacement current measurements. We uncover a strong self-gating effect that yields a 50-fold enhancement in interfacial capacitance, reaching 550 nF/cm2 in the maximum. Moreover, we reveal the IL-phase-dependent transport characteristics, including the channel current, carrier mobility, and density, substantiating the self-gating at the InSe/IL interface. The dominance of self-gating in the rubber phase is attributed to the correlation between the intra- and intersystem Coulomb interactions, further confirmed by Raman spectroscopy. This study provides insights into the capacitive coupling at the InSe/IL interface, paving the way to developing liquid/2D material hybrid devices.

2.
ACS Appl Mater Interfaces ; 13(3): 4618-4625, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33445863

RESUMO

As the continuous miniaturization of floating-gate transistors approaches a physical limit, new innovations in device architectures, working principles, and device materials are in high demand. This study demonstrated a nonvolatile memory structure with multilevel data storage that features a van der Waals gate architecture made up of a partially oxidized surface layer/indium selenide (InSe) van der Waals interface. The key functionality of this proof-of-concept device is provided through the generation of charge-trapping sites via an indirect oxygen plasma treatment on the InSe surface layer. In contrast to floating-gate nonvolatile memory, these sites have the ability to retain charge without the help of a gate dielectric. Together with the layered structure, the surface layer with charge-trapping sites facilitates continual electrostatic doping in the underlying InSe layers. The van der Waals gating effect is further supported by trapped charge-induced core-level energy shifts and relative work function variations obtained from operando scanning X-ray photoelectron spectroscopy and Kelvin probe microscopy, respectively. On modulating the amount of electric field-induced trapped electrons by the electrostatic gate potential, eight distinct storage states remained over 3000 s. Moreover, the device exhibits a high current switching ratio of 106 within 11 cycles. The demonstrated characteristics suggest that the engineering of an InSe interface has potential applications for nonvolatile memory.

3.
Nanotechnology ; 32(15): 155704, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33373982

RESUMO

The magnetotransport properties of a hybrid InSe/monolayer graphene in a SiC system are systematically studied. Compared to those of its bare graphene counterpart, in InSe/graphene, we can effectively modify the carrier density, mobility, effective mass, and electron-electron (e-e) interactions enhanced by weak disorder. We show that in bare graphene and hybrid InSe/graphene systems, the logarithmic temperature (lnT) dependence of the Hall slope R H = Î´R xy /δB = Î´ρ xy /δB can be used to probe e-e interaction effects at various temperatures even when the measured resistivity does not show a lnT dependence due to strong electron-phonon scattering. Nevertheless, one needs to be certain that the change of R H is not caused by an increase of the carrier density by checking the magnetic field position of the longitudinal resistivity minimum at different temperatures. Given the current challenges in gating graphene on SiC with a suitable dielectric layer, our results suggest that capping a van der Waals material on graphene is an effective way to modify the electronic properties of monolayer graphene on SiC.

4.
Nanoscale ; 12(35): 18269-18277, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32857093

RESUMO

Three-dimensional organic-inorganic hybrid halide perovskites have been demonstrated as great materials for applications in optoelectronics and photonics. However, their inherent instabilities in the presence of moisture, light, and heat may hinder their commercialization. Alternatively, emerging two-dimensional (2D) organic-inorganic hybrid perovskites have recently attracted increasing attention owing to their great environmental stability and inherent natural quantum-well structure. In this work, we have synthesized a high-quality long-chain organic diammonium spacer assisted 2D hybrid perovskite FA-(N-MPDA)PbBr4 (FA = formamidinium and N-MPDA = N-methylpropane-1,3-diammonium) by the slow evaporation at constant temperature method. The millimeter-sized single-crystalline microrods demonstrate low threshold random lasing behavior at room temperature. The single-crystalline 2D hybrid perovskite random laser achieved a very narrow linewidth (∼0.1 nm) with a low threshold (∼0.5 µJ cm-2) and a high quality factor (∼5350). Furthermore, the 2D hybrid microrod laser shows stable lasing emission with no measurable degradation after at least 2 h under continuous illumination, which substantially proves the stability of 2D perovskites. Our results demonstrate the promise of 2D organic-inorganic microrod-shaped perovskites and provide an important step toward the realization of high-performance optoelectronic devices.

5.
Sci Rep ; 10(1): 9803, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555237

RESUMO

Mid-infrared (MIR) light sources have much potential in the study of Dirac-fermions (DFs) in graphene and topological insulators (TIs) because they have a low photon energy. However, the topological surface state transitions (SSTs) in Dirac cones are veiled by the free carrier absorption (FCA) with same spectral line shape that is always seen in static MIR spectra. Therefore, it is difficult to distinguish the SST from the FCA, especially in TIs. Here, we disclose the abnormal MIR spectrum feature of transient reflectivity changes (ΔR/R) for the non-equilibrium states in TIs, and further distinguish FCA and spin-momentum locked SST using time-resolved and linearly polarized ultra-broadband MIR spectroscopy with no environmental perturbation. Although both effects produce similar features in the reflection spectra, they produce completely different variations in the ΔR/R to show their intrinsic ultrafast dynamics.

6.
ACS Appl Mater Interfaces ; 12(16): 18667-18673, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32233397

RESUMO

To explore the potential of field-effect transistors (FETs) based on monolayers (MLs) of the two-dimensional semiconducting channel (SC) for spintronics, the two most important issues are to ensure the formation of variable low-resistive tunnel ferromagnetic contacts (FCs) and to preserve intrinsic properties of the SC during fabrication. Large Schottky barriers lead to the formation of high resistive contacts, and methods adopted to control the barriers often alter the intrinsic properties of the SC. This work aims at addressing both issues in fully encapsulated ML WSe2 FETs using bilayer hexagonal boron nitride (h-BN) as a tunnel barrier at the FC/SC interface. We investigate the electrical transport in ML WSe2 FETs with the current-in-plane geometry that yields hole mobilities of ∼38.3 cm2 V-1 s-1 at 240 K and on/off ratios of the order of 107, limited by the contact regions. We have achieved an ultralow effective Schottky barrier (∼5.34 meV) with an encapsulated tunneling device as opposed to a nonencapsulated device in which the barrier heights are considerably higher. These observations provide an insight into the electrical behavior of the FC/h-BN/SC/h-BN heterostructures, and such control over the barrier heights opens up the possibilities for WSe2-based spintronic devices.

7.
Opt Express ; 28(1): 685-694, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118991

RESUMO

A novel approach for the production of both amorphous and crystalline selenium nanoparticles (SeNPs) using femtosecond laser-induced plasma shock wave on the surface of Bi2Se3 topological insulators at room temperature and ambient pressure is demonstrated. The shape and size of SeNPs can be reliably controlled via the kinetic energy obtained from laser pulses, so these are applicable as active components in nanoscale applications. Importantly, the rapid, low-cost and eco-friendly synthesis strategy developed in this study could also be extendable to other systems.

8.
Phys Rev Lett ; 124(4): 047204, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058744

RESUMO

dc and ac magnetic susceptibility, magnetization, specific heat, and Raman scattering measurements are combined to probe low-lying spin excitations in α-Ru_{1-x}Ir_{x}Cl_{3} (x≈0.2), which realizes a disordered spin liquid. At intermediate energies (ℏω>3 meV), Raman spectroscopy evidences linearly ω-dependent Majorana-like excitations, obeying Fermi statistics. This points to robustness of a Kitaev paramagnetic state under spin vacancies. At low energies below 3 meV, we observe power-law dependences and quantum-critical-like scalings of the thermodynamic quantities, implying the presence of a weakly divergent low-energy density of states. This scaling phenomenology is interpreted in terms of the random hoppings of Majorana fermions. Our results demonstrate an emergent hierarchy of spin excitations in a diluted Kitaev honeycomb system subject to spin vacancies and bond randomness.

9.
Inorg Chem ; 58(17): 11730-11737, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31415155

RESUMO

We report crystal growth, AC and DC magnetic susceptibilities [χ(T, H)], magnetization [M(T, H)], and heat capacity [CP(T, H)] measurement results of GdSbTe single crystal. GdSbTe is isostructural to the confirmed nonmagnetic nodal-line semimetal ZrSiS of noncentrosymmetric tetragonal crystal structure in space group P4/nmm (No. 129), but it shows additional long-range antiferromagnetic spin ordering for the Gd spins of S = 7/2 below TN. Both χ(T, H) and CP(T, H) measurements confirm the existence of a long-range antiferromagnetic (AFM) spin ordering of Gd spins below TN ∼ 12 K, and an additional spin reorientation/recovery (sr) behavior is identified from the change of on-site spin anisotropy between Tsr1 ∼ 7 and Tsr2 ∼ 4 K. The anisotropic magnetic susceptibilities of χ(T, H) below TN clearly demonstrate that the AFM long-range spin ordering of GdSbTe has an easy axis parallel to the ab-plane direction. The field- and orientation-dependent magnetization of M(T, H) at 2 K shows two plateaus to indicate the spin-flop transition for H||ab near ∼2.1 T and a metamagnetic state near ∼5.9 T having ∼1/3 of the fully polarized magnetization by the applied field. The heat capacity measurement results yield Sommerfeld coefficient of γ ∼ 7.6(4) mJ/mol K2 and θD ∼ 195(2) K being less than half of that for the nonmagnetic ZrSiS. A three-dimensional (3D) AFM spin structure is supported by the ab initio calculations for Gd having magnetic moment of 7.1 µB and the calculated AFM band structure indicates that GdSbTe is a semimetal with bare density of states (0.36 states/eV fu) at the Fermi level, which is 10 times smaller than the measured one to suggest strong spin-fluctuation.

10.
Phys Rev Lett ; 122(16): 167202, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31075021

RESUMO

We report on magnetization M(H), dc and ac magnetic susceptibility χ(T), specific heat C_{m}(T) and muon spin relaxation (µSR) measurements of the Kitaev honeycomb iridate Cu_{2}IrO_{3} with quenched disorder. In spite of the chemical disorders, we find no indication of spin glass down to 260 mK from the C_{m}(T) and µSR data. Furthermore, a persistent spin dynamics observed by the zero-field muon spin relaxation evidences an absence of static magnetism. The remarkable observation is a scaling relation of χ[H,T] and M[H,T] in H/T with the scaling exponent α=0.26-0.28, expected from bond randomness. However, C_{m}[H,T]/T disobeys the predicted universal scaling law, pointing towards the presence of additional low-lying excitations on the background of bond-disordered spin liquid. Our results signify a many-faceted impact of quenched disorder in a Kitaev spin system due to its peculiar bond character.

11.
Proc Natl Acad Sci U S A ; 116(4): 1168-1173, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30559211

RESUMO

Using polarized optical and magneto-optical spectroscopy, we have demonstrated universal aspects of electrodynamics associated with Dirac nodal lines that are found in several classes of unconventional intermetallic compounds. We investigated anisotropic electrodynamics of [Formula: see text] where the spin-orbit coupling (SOC) triggers energy gaps along the nodal lines. These gaps manifest as sharp steps in the optical conductivity spectra [Formula: see text] This behavior is followed by the linear power-law scaling of [Formula: see text] at higher frequencies, consistent with our theoretical analysis for dispersive Dirac nodal lines. Magneto-optics data affirm the dominant role of nodal lines in the electrodynamics of [Formula: see text].

12.
Dalton Trans ; 47(46): 16509-16515, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30411746

RESUMO

Based on the atomic electronic configuration and Ti-Se coordination, a valence bond model for the layered transition metal dichalcogenide (TMDC) 1T-TiSe2 is proposed. 1T-TiSe2 is viewed as being composed of edge-sharing TiSe4-plaquettes as TiSe2-ribbon chains in each layer via a directional valence shell electron distribution as chemical bonds, in contrast to the conventional layer view of face-sharing TiSe6-octahedra. The four valence electrons per Ti in the hybridized dsp2-orbitals of square coordination form σ-bonds with the four nearest neighbor Se atoms in the chain. The electrons in the lone pair of the Se-4pz orbital are proposed to form a dp type π-bond via side-to-side orbital overlap with the empty Ti-3dxz/3dyz orbitals within each chain, which is positively supported by quantum chemistry calculations. A study of electron energy loss spectroscopy (EELS) with transmission electron microscopy (TEM) for 1T-TiSe2 is presented to show an energy loss near ∼7 and ∼20 eV, which confirms the existence of collective plasmon oscillations with the predicted effective electron numbers for the π- and (π + σ)-bond electrons, respectively.

13.
ACS Appl Mater Interfaces ; 10(39): 33450-33456, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30191709

RESUMO

The electrical contact to two-dimensional (2D) semiconductor materials is decisive to the electronic performance of 2D semiconductor field-effect devices (FEDs). The presence of a Schottky barrier often leads to a large contact resistance, which seriously limits the channel conductance and carrier mobility measured in a two-terminal geometry. In contrast, Ohmic contact is desirable and can be achieved by the presence of a nonrectifying or tunneling barrier. Here, we demonstrate that a nonrectifying barrier can be realized by contacting indium (In), a low work function metal, with layered InSe because of a favorable band alignment at the In-InSe interface. The nonrectifying barrier is manifested by Ohmic contact behavior at T = 2 K and a low barrier height, ΦB = 50 meV. This Ohmic contact enables demonstration of an on-current as large as 410 µA/µm, which is among the highest values achieved in FEDs based on layered semiconductors. A high electron mobility of 3700 and 1000 cm2/V·s is achieved with the two-terminal In-InSe FEDs at T = 2 K and room temperature, respectively, which can be attributed to enhanced quality of both conduction channel and the contacts. The improvement in the contact quality is further proven by an X-ray photoelectron spectroscopy study, which suggests that a reduction effect occurs at the In-InSe interface. The demonstration of high-performance In-InSe FEDs indicates a viable interface engineering method for next-generation, 2D semiconductor-based electronics.

14.
Nat Commun ; 9(1): 3002, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068909

RESUMO

Among the quantum materials that have recently gained interest are the topological insulators, wherein symmetry-protected surface states cross in reciprocal space, and the Dirac nodal-line semimetals, where bulk bands touch along a line in k-space. However, the existence of multiple fermion phases in a single material has not been verified yet. Using angle-resolved photoemission spectroscopy (ARPES) and first-principles electronic structure calculations, we systematically study the metallic material Hf2Te2P and discover properties, which are unique in a single topological quantum material. We experimentally observe weak topological insulator surface states and our calculations suggest additional strong topological insulator surface states. Our first-principles calculations reveal a one-dimensional Dirac crossing-the surface Dirac-node arc-along a high-symmetry direction which is confirmed by our ARPES measurements. This novel state originates from the surface bands of a weak topological insulator and is therefore distinct from the well-known Fermi arcs in semimetals.

15.
Nano Lett ; 18(8): 5078-5084, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30021441

RESUMO

InSe, a newly rediscovered two-dimensional (2D) semiconductor, possesses superior electrical and optical properties as a direct-band-gap semiconductor with high mobility from bulk to atomically thin layers and is drastically different from transition-metal dichalcogenides, in which the direct band gap only exists at the single-layer limit. However, absorption in InSe is mostly dominated by an out-of-plane dipole contribution, which results in the limited absorption of normally incident light that can only excite the in-plane dipole at resonance. To address this challenge, we have explored a unique geometric ridge state of the 2D flake without compromising the sample quality. We observed the enhanced absorption at the ridge over a broad range of excitation frequencies from photocurrent and photoluminescence (PL) measurements. In addition, we have discovered new PL peaks at low temperatures due to defect states on the ridge, which can be as much as ∼60 times stronger than the intrinsic PL peak of InSe. Interestingly, the PL of the defects is highly tunable through an external electrical field, which can be attributed to the Stark effect of the localized defects. InSe ridges thus provide new avenues for manipulating light-matter interactions and defect engineering that are vitally crucial for novel optoelectronic devices based on 2D semiconductors.

16.
ACS Nano ; 12(7): 7185-7196, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29901987

RESUMO

The search for proximity-induced superconductivity in topological materials has generated widespread interest in the condensed matter physics community. The superconducting states inheriting nontrivial topology at interfaces are expected to exhibit exotic phenomena such as topological superconductivity and Majorana zero modes, which hold promise for applications in quantum computation. However, a practical realization of such hybrid structures based on topological semimetals and superconductors has hitherto been limited. Here, we report the strong proximity-induced superconductivity in type-II Weyl semimetal WTe2, in a van der Waals hybrid structure obtained by mechanically transferring NbSe2 onto various thicknesses of WTe2. When the WTe2 thickness ( tWTe2) reaches 21 nm, the superconducting transition occurs around the critical temperature ( Tc) of NbSe2 with a gap amplitude (Δp) of 0.38 meV and an unexpected ultralong proximity length ( lp) up to 7 µm. With the thicker 42 nm WTe2 layer, however, the proximity effect yields Tc ≈ 1.2 K, Δp = 0.07 meV, and a short lp of less than 1 µm. Our theoretical calculations, based on the Bogoliubov-de Gennes equations in the clean limit, predict that the induced superconducting gap is a sizable fraction of the NbSe2 superconducting one when tWTe2 is less than 30 nm and then decreases quickly as tWTe2 increases. This agrees qualitatively well with the experiments. Such observations form a basis in the search for superconducting phases in topological semimetals.

17.
Nano Lett ; 18(7): 4403-4408, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29860844

RESUMO

Manipulating the electron spin with the aid of spin-orbit coupling (SOC) is an indispensable element of spintronics. Electrostatically gating a material with strong SOC results in an effective magnetic field which can in turn be used to govern the electron spin. In this work, we report the existence and electrostatic tunability of Rashba SOC in multilayer InSe. We observed a gate-voltage-tuned crossover from weak localization (WL) to weak antilocalization (WAL) effect in quantum transport studies of InSe, which suggests an increasing SOC strength. Quantitative analyses of magneto-transport studies and energy band diagram calculations provide strong evidence for the predominance of Rashba SOC in electrostatically gated InSe. Furthermore, we attribute the tendency of the SOC strength to saturate at high gate voltages to the increased electronic density of states-induced saturation of the electric field experienced by the electrons in the InSe layer. This explanation of nonlinear gate voltage control of Rashba SOC can be generalized to other electrostatically gated semiconductor nanomaterials in which a similar tendency of spin-orbit length saturation was observed (e.g., nanowire field effect transistors), and is thus of broad implications in spintronics. Identifying and controlling the Rashba SOC in InSe may serve pivotally in devising III-VI semiconductor-based spintronic devices in the future.

18.
Proc Natl Acad Sci U S A ; 115(27): 6986-6990, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915084

RESUMO

A charge density wave (CDW) is one of the fundamental instabilities of the Fermi surface occurring in a wide range of quantum materials. In dimensions higher than one, where Fermi surface nesting can play only a limited role, the selection of the particular wavevector and geometry of an emerging CDW should in principle be susceptible to controllable manipulation. In this work, we implement a simple method for straining materials compatible with low-temperature scanning tunneling microscopy/spectroscopy (STM/S), and use it to strain-engineer CDWs in 2H-NbSe2 Our STM/S measurements, combined with theory, reveal how small strain-induced changes in the electronic band structure and phonon dispersion lead to dramatic changes in the CDW ordering wavevector and geometry. Our work unveils the microscopic mechanism of a CDW formation in this system, and can serve as a general tool compatible with a range of spectroscopic techniques to engineer electronic states in any material where local strain or lattice symmetry breaking plays a role.

19.
Nano Lett ; 18(5): 3221-3228, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29694049

RESUMO

Organic-inorganic hybrid two-dimensional (2D) perovskites have recently attracted great attention in optical and optoelectronic applications due to their inherent natural quantum-well structure. We report the growth of high-quality millimeter-sized single crystals belonging to homologous two-dimensional (2D) hybrid organic-inorganic Ruddelsden-Popper perovskites (RPPs) of (BA)2(MA) n-1Pb nI3 n+1 ( n = 1, 2, and 3) by a slow evaporation at a constant-temperature (SECT) solution-growth strategy. The as-grown 2D hybrid perovskite single crystals exhibit excellent crystallinity, phase purity, and spectral uniformity. Low-threshold lasing behaviors with different emission wavelengths at room temperature have been observed from the homologous 2D hybrid RPP single crystals. Our result demonstrates that solution-growth homologous organic-inorganic hybrid 2D perovskite single crystals open up a new window as a promising candidate for optical gain media.

20.
Nat Commun ; 9(1): 1550, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674651

RESUMO

Orbital degrees of freedom can have pronounced effects on the fundamental properties of electrons in solids. In addition to influencing bandwidths, gaps, correlation strength and dispersion, orbital effects have been implicated in generating novel electronic and structural phases. Here we show how the orbital nature of bands can result in non-trivial effects of strain on band structure. We use scanning-tunneling microscopy to study the effects of strain on the electronic structure of a heteroepitaxial thin film of a topological crystalline insulator, SnTe. By studying the effects of uniaxial strain on the band structure we find a surprising effect where strain applied in one direction has the most pronounced influence on the band structure along the perpendicular direction. Our theoretical calculations indicate that this effect arises from the orbital nature of the conduction and valence bands. Our results imply that a microscopic model capturing strain effects must include a consideration of the orbital nature of bands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...