Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 161(11)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39282844

RESUMO

We have synthesized L-cysteine and oleylamine stabilized CsPbBr3 perovskite quantum dots (PQDs) and coupled them with gold nanoparticles (AuNPs). The PQDs and AuNPs, as well as their hybrid nanostructures (HNS), were characterized using UV-visible (UV-vis) and photoluminescence (PL) spectroscopy. The UV-vis spectra show absorption bands of the HNS at 503 and 520 nm, attributed mainly to PQDs and AuNPs, respectively. The PQDs show a strong excitonic PL band peaked at 513 nm from PQDs. The HR-TEM results show the formation of hybrid structures between PQDs and AuNPs, which is also supported by the PL quenching of the PQDs by the coupled AuNPs. Ultrafast dynamics of the exciton and charge carriers in the HNS and pristine PQD were studied using femtosecond transient absorption. Multiexponential fitting of the dynamic data revealed the existence of shallow and deep trap states in pristine PQDs and ultrafast electron transfer from PQDs to AuNPs in the HNS. A kinetic model was proposed to account for the key dynamic processes involved and to extract the time for electron transfer from PQDs to AuNPs in the HNS, found to be ∼2 ps. Dynamic processes in pristine PQDs are largely unchanged by HNS formation with AuNPs.

2.
J Phys Chem Lett ; 15(19): 5177-5182, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38717311

RESUMO

Exciton dynamics of perovskite nanoclusters has been investigated for the first time using femtosecond transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopy. The TA results show two photoinduced absorption signals at 420 and 461 nm and a photoinduced bleach (PB) signal at 448 nm. The analysis of the PB recovery kinetic decay and kinetic model uncovered multiple processes contributing to electron-hole recombination. The fast component (∼8 ps) is attributed to vibrational relaxation within the initial excited state, and the medium component (∼60 ps) is attributed to shallow carrier trapping. The slow component is attributed to deep carrier trapping from the initial conduction band edge (∼666 ps) and the shallow trap state (∼40 ps). The TRPL reveals longer time dynamics, with modeled lifetimes of 6.6 and 93 ns attributed to recombination through the deep trap state and direct band edge recombination, respectively. The significant role of exciton trapping processes in the dynamics indicates that these highly confined nanoclusters have defect-rich surfaces.

3.
J Phys Chem Lett ; 15(16): 4311-4318, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38619190

RESUMO

InP/ZnSexS1-x core/shell quantum dots (QDs) with varying Cu concentrations were synthesized by a one-pot hot-injection method. X-ray diffraction and high-resolution transmission electron microscopy results indicate that Cu doping did not alter the crystal structure or particle size of the QDs. The optical shifts in UV-visible absorption and photoluminescence (PL) suggest changes in the electronic structure and induction of lattice disorder due to Cu doping. Ultrafast transient absorption spectroscopy (TAS) reveled that a higher Cu-doping level leads to faster charge carrier recombination, likely due to increased nonradiative decay from defect states. Time-resolved PL (TRPL) studies show longer average lifetimes of charge carriers with increased Cu doping. These findings informed the development of a kinetic model to better understand how Cu-induced disorder affects charge carrier dynamics in the QDs, which is important for emerging applications of Cu-doped InP/ZnSexS1-x QDs in optoelectronics.

4.
J Phys Chem Lett ; 14(1): 116-121, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574605

RESUMO

In the synthesis of cesium lead bromide (CsPbBr3) perovskite quantum dots, with an electronic absorption and emission band around 510 nm, and perovskite magic-sized clusters (PMSCs), with an electronic absorption and emission band around 430 nm, another distinct absorption and emission around 400 nm is often observed. While many would attribute this band to small perovskite particles, here we show strong evidence that this band is a result of the formation of lead bromide molecular clusters (PbBr2 MCs) passivated with ligands, which do not contain the A component of the ABX3 perovskite structure. This evidence comes from a systematic comparative study of the reaction products with and without the A component under otherwise identical experimental conditions. The results support that the near 400 nm band originates from ligand-passivated PbBr2 MCs. This observation seems to be quite general and is significant in understanding the nature of the reaction products in the synthesis of metal halide perovskite nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA