Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2643: 445-453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952205

RESUMO

Insect-transmitted trypanosomatid parasite infections cause life-threatening neglected tropical diseases (NTDs), including African sleeping sickness, Chagas disease and leishmaniasis. In these parasites, glycosomes are unique organelles that are essential for the parasite survival. Proper biogenesis of glycosomes is crucial to ensure correct compartmentation of the glycosomal metabolism. Genetic or chemical disruption of the glycosome biogenesis leads to a mislocalization of the glycosomal enzymes into the cytosol, which results in toxicity to the parasites. Here, we describe a detailed protocol for biochemical fractionation of Trypanosoma brucei parasites to detect mislocalization of glycosomal proteins to the cytosol. This approach utilizes increasing concentrations of digitonin that first permeabilizes the plasma membrane, followed by permeabilization of other organelles, depending on their cholesterol content. Fractionated samples can be further analyzed using immunoblotting for specific marker proteins or quantified by the specific enzyme activities.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Animais , Microcorpos , Trypanosoma brucei brucei/genética , Transporte Proteico , Proteínas de Protozoários/metabolismo
2.
Lab Chip ; 21(15): 2955-2970, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34132296

RESUMO

Metastasis is a frequent complication of cancer and accounts for more than 60% of patients' mortality. Despite technological advancements, treatment options are still limited. Ion channels participate in the regulation of cell adhesion, whilst the regulation of cell adhesion further controls metastasis formation. However, to develop a new ion channel inhibitor targeting metastasis takes tremendous effort and resources; therefore, drug repurposing is an emerging strategy in oncology. In previous studies, we have developed a metal-based nanoslit surface plasmon resonance (SPR) platform to examine the influence of drugs on the cell adhesion process. In this work, we developed a scanner-based cell adhesion kinetic examination (CAKE) system that is capable of monitoring the cell adhesion process by measuring color changes of SPR biosensors. The system's performance was demonstrated by screening the anti-metastasis ability of compounds from a commercial ion-channel inhibitor library. Out of the 274 compounds from the inhibitor library, zinc pyrithione (ZPT) and terfenadine were demonstrated to influence CL1-5 cell adhesion. The cell responses to the two compounds were then compared with those by traditional cell adhesion assays where similar behavior was observed. Further investigation of the two compounds using wound healing and transwell assays was performed and inhibitions of both cell migration and invasion by the two compounds were also observed. The results indicate that ZPT and terfenadine are potential candidates for anti-metastasis drugs. Our work has demonstrated the label-free drug screening ability of our CAKE system for finding potential drugs for cancer treatment.


Assuntos
Preparações Farmacêuticas , Ressonância de Plasmônio de Superfície , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Humanos
3.
J Vis Exp ; (170)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33938879

RESUMO

Physiological electric fields (EF) play vital roles in cell migration, differentiation, division, and death. This paper describes a microfluidic cell culture system that was used for a long-term cell differentiation study using microscopy. The microfluidic system consists of the following major components: an optically transparent electrotactic chip, a transparent indium-tin-oxide (ITO) heater, a culture media-filling pump, an electrical power supply, a high-frequency power amplifier, an EF multiplexer, a programmable X-Y-Z motorized stage, and an inverted phase-contrast microscope equipped with a digital camera. The microfluidic system is beneficial in simplifying the overall experimental setup and, in turn, the reagent and sample consumption. This work involves the differentiation of neural stem and progenitor cells (NPCs) induced by direct current (DC) pulse stimulation. In the stem cell maintenance medium, the mouse NPCs (mNPCs) differentiated into neurons, astrocytes, and oligodendrocytes after the DC pulse stimulation. The results suggest that simple DC pulse treatment could control the fate of mNPCs and could be used to develop therapeutic strategies for nervous system disorders. The system can be used for cell culture in multiple channels, for long-term EF stimulation, for cell morphological observation, and for automatic time-lapse image acquisition. This microfluidic system not only shortens the required experimental time, but also increases the accuracy of control on the microenvironment.


Assuntos
Diferenciação Celular , Animais , Astrócitos/citologia , Técnicas de Cultura de Células , Eletricidade , Dispositivos Lab-On-A-Chip , Camundongos , Células-Tronco Neurais/citologia , Neurônios/citologia , Oligodendroglia/citologia
4.
Sci Total Environ ; 651(Pt 1): 1058-1066, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30266051

RESUMO

Due to rapid industrialization and urbanization, the environment is exposed to many chemicals from natural or anthropogenic sources. The contaminants impact eco-system and human health via food chain. Animals, including humans, are likely to accumulate contaminants in their bodies from direct exposure or feeding behavior, resulting in toxicity. Therefore, evaluation of the toxicity of contaminants is an important issue. Metals are highly toxic but the toxicity depends on many factors, including the valance and the complex form of metals, the organic matter level in the environment, the reducing/oxidizing condition of the environment, and etc. Since the level of metal amount does not directly correlate to bioavailability, cell culture is usually used for toxicity evaluation. In this study, a microfluidic chip was developed to evaluate the cell toxicity from exposure to metals, copper and thallium. Compared to traditional cytotoxicity assay using static state culture with tetrazolium reagent, this microfluidic chip can generate various shear stresses by changing geometry of culture areas or flow rate. Enhancement of shear stresses could increase cell sensitivity toward metal exposure. Therefore, this platform provides a more sensitive platform for quantitative analysis of cell toxicity and could be applied to evaluate toxicity from environmental samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...