Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
RSC Med Chem ; 15(3): 895-915, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516589

RESUMO

Two nickel(ii) coordination complexes [Ni(L)]2(1) and [Ni(L)]n(2) of a tetradentate Schiff base ligand (H2L) derived from 2-hydroxy-1-naphthaldehyde with ethylenediamine were synthesized, designed, and characterized via spectroscopic and single crystal XRD analyses. Both nickel(ii) complexes exhibited unusual Ni⋯Ni interactions and were fully characterized via single-crystal X-ray crystallography. Nickel(ii) complexes [Ni(L)]2(1) and [Ni(L)]n(2) crystallize in monoclinic and triclinic crystal systems with P21/c and P1̄ space groups, respectively, and revealed square planar geometry around each Ni(ii) ion. The structure of both the complexes have established the existence of a new kind of metal system containing nickel(ii)-nickel(ii) interactions with a square planar-like geometry about the nickel(ii) atoms. Both square planar Ni(ii) complexes were often stacked with relatively short Ni⋯Ni distances. The non-bonded Ni-Ni distance (Ni⋯Ni separation) seems to be 3.356 Å and 3.214 Å from the nickel atoms of [Ni(L)]2(1) and [Ni(L)]n(2), respectively. These distances are shorter than the sum of their van der Waals radii (4.80 Å) but longer than the sum of their covalent radii (2.50 Å), indicating that there is a Ni⋯Ni interaction but not a Ni-Ni bond. The discrete molecules are π-stacked and connected via weak intermolecular interactions (C-H⋯O and C-H⋯N). Cyclic voltammetry measurements were obtained for both the complexes, and their pharmacokinetic and chemoinformatics properties were also explored. Detailed structural analysis and non-covalent supramolecular interactions were investigated using single-crystal structure analysis and computational approaches. Both the unique structures show good inhibition performance for the Omicron spike proteins of the SARS CoV-2 virus. To gain insights into potential SARS-CoV-2 Omicron drugs and find inhibitors against the Omicron variants of SARS-CoV-2, we examined the molecular docking of the nickel(ii) complexes [Ni(L)]2(1) and [Ni(L)]n(2) with the SARS-CoV-2 Omicron spike protein (PDB ID: 7WK2 and 7WVO). A strong binding was predicted between Ni(ii) coordination complexes [Ni(L)]2(1) and [Ni(L)]n(2) with the SARS-CoV-2 Omicron variant receptor protein through the negative value of binding affinity. Molecular docking of Nil(ii) complexes [Ni(L)]2(1) and [Ni(L)]n(2) with a DNA duplex (PDB ID: 7D3T) and RNA (PDB ID: 7TDC) binding protein was also studied. Overall, this study suggests that Ni(ii) complexes can be considered as drug candidates against the Omicron variants of SARS-CoV-2.

2.
Funct Plant Biol ; 51(1): NULL, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37743054

RESUMO

The co-occurrence of salinisation and alkalisation is quite frequent in problematic soils and poses an immediate threat to food, feed and nutritional security. In the present study, root system architectural traits (RSAs) and ion profiling were evaluated in 21 genotypes of Avena species to understand the effect of salinity-alkalinity stress. The oat genotypes were grown on germination paper and 5-day-old seedlings were transferred to a hydroponic system for up to 30days. These seedlings were subjected to seven treatments: T0 , treatment control (Hoagland solution); T1 , moderate salinity (50mM); T2 , high salinity (100mM); T3 , moderate alkalinity (15mM); T4 , high alkalinity (30mM); T5 , combined moderate salinity-alkalinity (50mM+15mM); and T6 , combined high salinity-alkalinity (100mM and 30mM) by using NaCl+Na2 SO4 (saline) and NaHCO3 +Na2 CO3 (alkaline) salts equivalently. The root traits, such as total root area (TRA), total root length (TRL), total root diameter (TRD), total root volume (TRV), root tips (RT), root segments (RS), root fork (RF) and root biomass (RB) were found to be statistically significant (P + and K+ content analysis in root and shoot tissues revealed the ion homeostasis capacity of different Avena accessions under stress treatments. Principal component analysis (PCA) covered almost 83.0% of genetic variation and revealed that the sharing of TRA, RT, RS and RF traits was significantly high. Biplot analysis showed a highly significant correlation matrix (P <0.01) between the pairs of RT and RS, TRL and RS, and RT and RF. Based on PCA ranking and relative value for stress tolerance, IG-20-1183, IG-20-894, IG-20-718 and IG-20-425 expressed tolerance to salinity (T2), IG-20-425 (alkalinity; T4) and IG-20-1183, IG-20-894 and IG-20-1004 were tolerant to salt-alkali treatment (T6). Multi-trait stability index (MTSI) analysis identified three stable oat genotypes (IG-20-714, IG-20-894 and IG-20-425) under multiple environments and these lines can be used in salinity-alkalinity affected areas after yield trials or as donor lines for combined stresses in future breeding programs.


Assuntos
Avena , Cloreto de Sódio , Cloreto de Sódio/farmacologia , Álcalis/farmacologia , Estresse Fisiológico/genética , Melhoramento Vegetal , Plântula , Cloreto de Sódio na Dieta/farmacologia
3.
Animals (Basel) ; 13(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067027

RESUMO

This study evaluated 5 annual and 11 perennial Indian pasture legumes species for their nutritive value, dry matter and mineral contents and in vitro fermentation parameters. Legume species differed significantly (p < 0.05) in various nutritional aspects such as organic matter, crude protein (CP), ether extract, fibres and protein fractions. Perennial Clitoria ternateaa had higher (p < 0.05) buffer soluble protein (477), while neutral detergent soluble protein was highest in annually grown Lablab purpureus (420 g/kg CP). Atylosia scarabaeoides (AS) had higher levels of nonstructural carbohydrates (NSCs) (392 g/kg dry matter (DM)) than structural carbohydrates (SC) (367 g/kg DM). Its rapidly degradable fraction (51.7 g/kg (total carbohydrate) tCHO) was lower (p < 0.05) than other fractions of carbohydrates. Total digestible nutrients, digestible energy and metabolisable energy varied, with Desmodium virgatus (DV) having higher values and Stylosanthas seabrana (SSe) having the lowest. Predicted dry matter intake, digestible dry matter and relative feed value also showed significant differences (p < 0.05). Annual grasses such as Dolichos biflorus, Macroptilium atropurpureum, Rhynchosia minima (RM) were found to be better balanced with micro minerals. In vitro dry matter degradability, partition factor, short-chain fatty acids and microbial protein production of legumes varied significantly (p < 0.05). Gas and CH4 production (mL/g and mL/g (digestible DM) DDM) also varied, with Clitoria ternatea-blue having the highest gas production and C. ternatea -white (CT-w) and AS having lower CH4 production. Methane in total gas was low for DV, RM and CT-w (8.99%, 9.72% and 9.51%). Loss of DE and ME as CH4 varied (p < 0.05) among the legumes. Each legume offers unique benefits, potentially allowing for tailored combinations of annual and perennial legumes to optimize rumen feed efficiency.

4.
Proteomes ; 11(4)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133152

RESUMO

Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification, governing gene expression in response to diverse environmental cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation, methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-related traits. This review comprehensively explores the world of PTMs of histones in plants and their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The significance of PTMs in enhancing the plants' ability to cope with abiotic stresses has also been discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance in plants. Understanding the intricate proteome complexity due to various proteoforms/protein variants is a challenging task, but emerging single-cell resolution techniques may help to address such challenges. The review provides the future prospects aimed at harnessing the full potential of PTMs for improved plant responses under changing climate change.

5.
Mol Biol Rep ; 50(8): 6829-6841, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392281

RESUMO

BACKGROUND: Maize is an excellent fodder crop due to its high biomass, better palatability, succulency, and nutrition. Studies on morpho-physiological and biochemical characterization of fodder maize are limited. The present study aimed to explore the genetic variation in fodder maize landraces for various morpho-physiological traits and estimation of genetic relationship and population structure. METHODS AND RESULTS: The study on 47 fodder maize landraces revealed significant variation for all morpho-physiological traits except leaf-stem ratio. Plant height, stem girth, leaf-width and number of leaves showed positive correlation with green fodder yield. Morpho-physiological traits-based clustering grouped the landraces into three major clusters, whereas neighbour joining cluster and population structure analysis using 40 SSR markers revealed four and five major groups, respectively. Most landraces of Northern Himalaya-Kashmir and Ludhiana fall into a single group, whereas rest groups mainly had landraces from North-Eastern Himalaya. A total of 101 alleles were generated with mean polymorphic information content value of 0.36 and major allele frequency of 0.68. The pair wise genetic dissimilarity between genotypes ranged from 0.21 to 0.67. Mantel test revealed weak but significant correlation between morphological and molecular distance. Biochemical characterisation of superior landraces revealed significant variation for neutral detergent fibre, acid detergent fibre, cellulose and lignin content. CONCLUSION: Interestingly, significant, and positive correlation of SPAD with lignin content can be explored to bypass the costly affair of invitro quality assessment for digestibility parameters. The study identified superior landraces and demonstrated the use of molecular markers in genetic diversity assessment and grouping of genotypes for fodder maize improvement.


Assuntos
Variação Genética , Zea mays , Zea mays/genética , Detergentes , Lignina/genética , Índia
6.
Funct Integr Genomics ; 23(3): 213, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37378707

RESUMO

Plant diseases threaten global food security by reducing the production and quality of produce. Identification of disease resistance sources and their utilization in crop improvement is of paramount significance. However, constant evolution and occurrence of new, more aggressive and highly virulent pathotypes disintegrates the resistance of cultivars and hence demanding the steady stream of disease resistance cultivars as the most sustainable way of disease management. In this context, molecular tools and technologies facilitate an efficient and rational engineering of crops to develop cultivars having resistance to multiple pathogens and pathotypes. Puccinia spp. is biotrophic fungi that interrupt crucial junctions for causing infection, thus risking nutrient access of wheat plants and their subsequent growth. Sugar is a major carbon source taken from host cells by pathogens. Sugar transporters (STPs) are key players during wheat-rust interactions that regulate the transport, exchange, and allocation of sugar at plant-pathogen interfaces. Intense competition for accessing sugars decides fate of incompatibility or compatibility between host and the pathogen. The mechanism of transport, allocation, and signaling of sugar molecules and role of STPs and their regulatory switches in determining resistance/susceptibility to rusts in wheat is poorly understood. This review discusses the molecular mechanisms involving STPs in distribution of sugar molecules for determination of rust resistance/susceptibility in wheat. We also present perspective on how detailed insights on the STP's role in wheat-rust interaction will be helpful in devising efficient strategies for wheat rust management.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Açúcares , Puccinia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
7.
Environ Res ; 216(Pt 2): 114527, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265607

RESUMO

Biochar is known for the improvement of soil health, fertility, crop productivity, and quality in many agro-ecosystems globally, but information regarding fodder yield, quality, and soil microbial activity responses to biochar application remains very limited. The objective of this study was to prepare biochar from invasive weeds, i.e., Parthenium hysterophorus L. and Lantana camara L., and use it as a soil amendment along with inorganic fertilizers for oats (Avena sativa L.) growth, fodder yield, quality, and soil microbial activities in a two-year pot experiment. Treatments were comprised of control, 100% RDF (Recommended dose of fertilizers), 75% RDF along with three doses (2.5, 5.0, and 10 t/ha) of Parthenium hysterophorus L. biochar (PB) and Lantana camara L. biochar (LB), PB (10 t/ha), and LB (10 t/ha). Results showed that application of 75% RDF along with 10 t/ha LB gave significantly higher green (∼8%) and dry (∼7.8%) fodder yield and crude protein (∼6%) and decreased acid detergent fibre (ADF) and neutral detergent fibre (NDF) by 5.70 and 6.04% as compared to the 100% RDF treatment. The same treatment had a significantly higher population of bacteria (7.33 × 108 colony forming unit (CFU)/g soil), alkaline phosphatase activity (19.56 µg pNP/g soil/h), microbial biomass carbon (156.67 µg/g soil) and dehydrogenase activity (12.59 µg TPF/g/24 h), whereas the maximum fungal population (13.33 × 104 CFU/g soil) and acid phosphatase activity (14.45 µg pNP/g soil/h) were found in 75% RDF along with 10 t/ha PB and control treatment, respectively. This study concluded that application of invasive weed biochar along with inorganic fertilizers can benefit fodder yield and quality of oats by increasing plant height and number of tillers directly and by improving nutrient availability and water holding capacity (WHC) of soil indirectly, besides improving soil health. The findings from this study will provide a potential strategy for invasive weed management.


Assuntos
Fertilizantes , Solo , Plantas Daninhas , Avena , Ecossistema , Detergentes , Agricultura/métodos , Grão Comestível , Ração Animal
8.
J Biomol Struct Dyn ; 41(2): 402-422, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34842499

RESUMO

A nickel(II) Schiff base complex, [Ni(L)(DMF)](1), was synthesized by treating NiCl2.6H2O with an ONS-donor Schiff base ligand(H2L) derived from the condensation 3,5-Dichlorosalicylaldehyde and 4,4-Dimethyl-3-thiosemicarbazide in DMF. The geometry around the center metal ion in [Ni(L)(DMF)](1) was square planar as revealed by the data collection from diffraction studies. DFT calculations were performed on the complex to get a structure-property relationship. Hirshfeld surface analysis was also carried out in the crystal structure of nickel (II) Schiff base complex. Additionally, inspiring from recent developments to find a potential inhibitor for SARS-CoV-2 virus, we have also performed molecular docking study of [Ni(L)(DMF)](1) to see if our novel complex show affinity for main protease (Mpro) of SARS-CoV-2 Mpro (PDB ID: 6LZE). Interestingly, the results are found quite encouraging where the binding affinity and inhibition constant was found to be -6.6 kcal/mol and 2.358 µM, respectively, for the best docked confirmation of complex [Ni(L)(DMF)](1) with Mpro protein. This binding affinity is reasonably well as compared to recently known antiviral drugs. For instance, the binding affinity of complex [Ni(L)(DMF)](1) is found to be better than that of recently docking results of anti-SARS-CoV-2 drugs like chloroquine (-6.293 kcal/mol), hydroxychloroquine (-5.573 kcal/mol) and remdesivir (-6.352 kcal/mol) when targeted to the active-site of SARS-CoV-2 Mpro. Besides this, molecular docking against G25K GTP-nucleotide binding protein (PDB ID: 1A4R) was also studied. We believe that current results can intrigue not only for the biomedical community but also for the materials chemists who are engaged to explore the application coordination complexes. Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Níquel/química , Simulação de Acoplamento Molecular , Bases de Schiff/química , Inibidores de Proteases/química , Simulação de Dinâmica Molecular
9.
J Biomol Struct Dyn ; 41(11): 4957-4980, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35604068

RESUMO

This work deals with the synthesis and characterization of copper(II) complex [Cu(salen)(H2O)](1) of salen-type Schiff base ligand derived from the condensation of 5-bromo-2-hydroxy-3-methoxybenzaldehyde and ethylenediamine in EtOH. This complex was characterized by different spectroscopic and physicochemical methods. Single crystal X-ray crystallography study revealed that Cu(II) in complex (1) is five-coordinate and adopts a distorted square pyramidal geometry. A DFT calculation was employed to evaluate the optimized electronic structure, HOMO-LUMO, energy gap, and global parameters. A detailed structural and non-covalent interaction on the complex is investigated by single crystal structure analysis and computational approaches. The strength of the interaction and 3D topology of the crystal packing are visualized through an energy framework. Hirshfeld surface and 2D fingerprint plots have been explored in the crystal structure of the complex. The anticancer properties of copper(II) complex was studied against the selected cancerous cell lines of breast cancer, cervical cancer, colon cancer and hepatocellular carcinoma. Additionally, molecular docking and MD simulations was performed on the complex to predict the binding mode and interactions between the ligand and the main protease of the SARS-CoV-2 (PDB ID: 7CBT and 7D1M). The molecular docking calculations of the complex (1) with SARS-CoV-2 virus revealed the binding energy of -8.1 kcal/mol and -7.5 kcal/mol with an inhibition constant of 3.245 µM and 2.318 µM at inhibition binding site of receptor towards 7CBT and 7D1M main protease (Mpro), respectively. Besides this, molecular docking results (-7.6 kcal/mol, 3.196 µM) towards Escherichia coli PBP2 targets (PDB ID: 6G9S) was also studied.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cobre/química , Simulação de Acoplamento Molecular , Bases de Schiff/química , Ligantes , Etilenodiaminas , Peptídeo Hidrolases
10.
Front Genet ; 13: 939182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452161

RESUMO

Soybean is one of the largest sources of protein and oil in the world and is also considered a "super crop" due to several industrial advantages. However, enhanced acreage and adoption of monoculture practices rendered the crop vulnerable to several diseases. Phytophthora root and stem rot (PRSR) caused by Phytophthora sojae is one of the most prevalent diseases adversely affecting soybean production globally. Deployment of genetic resistance is the most sustainable approach for avoiding yield losses due to this disease. PRSR resistance is complex in nature and difficult to address by conventional breeding alone. Genetic mapping through a cost-effective sequencing platform facilitates identification of candidate genes and associated molecular markers for genetic improvement against PRSR. Furthermore, with the help of novel genomic approaches, identification and functional characterization of Rps (resistance to Phytophthora sojae) have also progressed in the recent past, and more than 30 Rps genes imparting complete resistance to different PRSR pathotypes have been reported. In addition, many genomic regions imparting partial resistance have also been identified. Furthermore, the adoption of emerging approaches like genome editing, genomic-assisted breeding, and genomic selection can assist in the functional characterization of novel genes and their rapid introgression for PRSR resistance. Hence, in the near future, soybean growers will likely witness an increase in production by adopting PRSR-resistant cultivars. This review highlights the progress made in deciphering the genetic architecture of PRSR resistance, genomic advances, and future perspectives for the deployment of PRSR resistance in soybean for the sustainable management of PRSR disease.

11.
Sci Total Environ ; 851(Pt 2): 158211, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36029814

RESUMO

Tropical grasses are the primary source of forage for livestock and a valuable resource for improving soil health and environmental sustainability in semi-arid regions. A study was carried out in a semi-arid region of central India to determine the short-term (6-year) impact of nine range grasses on soil physio-chemical and biological properties, carbon stock, and forage security. The experiment was carried out in a randomized block design with three replications. Results show that the majority of the grass roots were distributed in the upper soil layer (0-10 cm, 63.5-76.5 %), and then in the middle (10-20 cm, 21.3-25 %) and lower (20-30 cm, 2.2-11.5 %) layers. Perennial tussock grass (Heteropogon contortus (L.) P. Beauv. ex Roem. & Schult) had a higher root volume (2219 mm3), followed by Guinea grass [Megathyrsus maximus (Jacq.) B.K. Simon & S.W.L. Jacobs] (1860 mm3). A lower soil bulk density (BD, 1.11-1.23 g cm-3), higher gravimetric water content (GMW, 14.0-17.8 %), and soil organic carbon (0.38-0.73 %) were recorded for grass-cultivated plots compared to the barren land (1.38 g cm-3, 13.0 %, and 0.28 %, respectively). The perennial tussock grass and Guinea grass resulted in the highest soil microbial biomass carbon (SMBC, 70.1 mg kg-1 soil) and enzyme activities (dehydrogenase, 17.09 µg TPF g-1 day-1 and fluorescein diacetate activity 4.94 µg fluorescein g-1 h-1). The considerable improvement in soil properties with minimal inputs resulted in a higher sustainable yield index and carbon sustainability index in plots planted with Guinea grass (0.9 and 89.29) and perennial tussock grass (0.89 and 71.61). Therefore, the cultivation of either Guinea grass or perennial tussock grass as an intercrop or sole crop in the semi-arid environment can be an ecologically sound strategy to improve soil health, C sequestration, and fodder supply.


Assuntos
Panicum , Solo , Solo/química , Carbono/metabolismo , Água , Ração Animal , Fluoresceínas , Oxirredutases
12.
Proteomes ; 10(2)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35645375

RESUMO

Wheat is an important staple cereal for global food security. However, climate change is hampering wheat production due to abiotic stresses, such as heat, salinity, and drought. Besides shoot architectural traits, improving root system architecture (RSA) traits have the potential to improve yields under normal and stressed environments. RSA growth and development and other stress responses involve the expression of proteins encoded by the trait controlling gene/genes. Hence, mining the key proteins associated with abiotic stress responses and RSA is important for improving sustainable yields in wheat. Proteomic studies in wheat started in the early 21st century using the two-dimensional (2-DE) gel technique and have extensively improved over time with advancements in mass spectrometry. The availability of the wheat reference genome has allowed the exploration of proteomics to identify differentially expressed or abundant proteins (DEPs or DAPs) for abiotic stress tolerance and RSA improvement. Proteomics contributed significantly to identifying key proteins imparting abiotic stress tolerance, primarily related to photosynthesis, protein synthesis, carbon metabolism, redox homeostasis, defense response, energy metabolism and signal transduction. However, the use of proteomics to improve RSA traits in wheat is in its infancy. Proteins related to cell wall biogenesis, carbohydrate metabolism, brassinosteroid biosynthesis, and transportation are involved in the growth and development of several RSA traits. This review covers advances in quantification techniques of proteomics, progress in identifying DEPs and/or DAPs for heat, salinity, and drought stresses, and RSA traits, and the limitations and future directions for harnessing proteomics in wheat improvement.

13.
Mol Biol Rep ; 49(12): 12091-12107, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35752697

RESUMO

Conventional agricultural practices rely heavily on chemical fertilizers to boost production. Among the fertilizers, phosphatic fertilizers are copiously used to ameliorate low-phosphate availability in the soil. However, phosphorus-use efficiency (PUE) for major cereals, including maize, is less than 30%; resulting in more than half of the applied phosphate being lost to the environment. Rock phosphate reserves are finite and predicted to exhaust in near future with the current rate of consumption. Thus, the dependence of modern agriculture on phosphatic fertilizers poses major food security and sustainability challenges. Strategies to optimize and improve PUE, like genetic interventions to develop high PUE cultivars, could have a major impact in this area. Here, we present the current understanding and recent advances in the biological phenomenon of phosphate uptake, translocation, and adaptive responses of plants under phosphate deficiency, with special reference to maize. Maize is one of the most important cereal crops that is cultivated globally under diverse agro-climatic conditions. It is an industrial, feed and food crop with multifarious uses and a fast-rising global demand and consumption. The interesting aspects of diversity in the root system architecture traits, the interplay between signaling pathways contributing to PUE, and an in-depth discussion on promising candidate genes for improving PUE in maize are elaborated.


Assuntos
Fósforo , Zea mays , Fósforo/metabolismo , Zea mays/genética , Zea mays/metabolismo , Fertilizantes , Produtos Agrícolas/genética , Agricultura/métodos , Solo/química , Fosfatos
14.
J Mol Struct ; 1263: 133114, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35465175

RESUMO

This paper describes the structure-based design, synthesis and anti-virus effect of two new coordination complexes, a Ni(II) complex [Ni(L)2] (1) and a Cu(II) complex [Cu(L)2] (2) of (E)-N-phenyl-2-(thiophen-2-ylmethylene) hydrazine-1-carbothioamide(HL). The synthesized ligand was coordinated to metal ions through the bidentate-N, S donor atoms. The newly synthesized complexes were characterized by various spectroscopic and physiochemical methods, powdered XRD analysis and also X-ray crystallography study. Ni(II) complex [Ni(L)2](1) crystallize in orthorhombic crystal system with the space group Pbca with four molecules in the unit cell (a = 9.857(3) Å, b = 7.749(2) Å, c = 32.292(10) Å, α = 90°, ß = 90°, γ = 90°, Z= 4) and reveals a distorted square planar geometry. A Hirshfeld surface and 2D fingerprint plot has been explored in the crystal structure of Ni(II) complex [Ni(L)2] (1). Energy framework computational analysia has also been explored. DFT based calculations have been performed on the Schiff base and its metal complexes to study the structure-property relationship. Furthermore, the molecular docking studies of the ligand and its metal complexes with SARS-CoV-2 virus (PDB ID: 7BZ5) and HIV-1 virus (PDB ID: 6MQA) are also investigated. The molecular docking calculations of the Ni(II) complex [Ni(L)2] (1) and a Cu(II) complex [Cu(L)2] (2) with SARS-CoV-2 virus revealed that the binding affinities at inhibition binding site of receptor protein are 9.7 kcal/mol and -9.3 kcal/mol, respectively. The molecular docking results showed that the binding affinities of Ni(II) complex (1) and Cu(II) complex (2) against SARS-CoV-2 virus were found comparatively higher than the HIV-1 virus (-8.5 kcal/mol and -8.2 kcal/mol, respectively). As potential drug candidates, Swiss-ADME predictions analyses are also studied and the results are compared with Chloroquine (CQ) and Hydroxychloroquine (HCQ) as anti-SARS-CoV-2 drugs.

15.
Genes (Basel) ; 13(4)2022 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-35456404

RESUMO

Advances in sequencing technologies and bioinformatics tools have fueled a renewed interest in whole genome sequencing efforts in many organisms. The growing availability of multiple genome sequences has advanced our understanding of the within-species diversity, in the form of a pangenome. Pangenomics has opened new avenues for future research such as allowing dissection of complex molecular mechanisms and increased confidence in genome mapping. To comprehensively capture the genetic diversity for improving plant performance, the pangenome concept is further extended from species to genus level by the inclusion of wild species, constituting a super-pangenome. Characterization of pangenome has implications for both basic and applied research. The concept of pangenome has transformed the way biological questions are addressed. From understanding evolution and adaptation to elucidating host-pathogen interactions, finding novel genes or breeding targets to aid crop improvement to design effective vaccines for human prophylaxis, the increasing availability of the pangenome has revolutionized several aspects of biological research. The future availability of high-resolution pangenomes based on reference-level near-complete genome assemblies would greatly improve our ability to address complex biological problems.


Assuntos
Melhoramento Vegetal , Plantas , Mapeamento Cromossômico , Humanos , Plantas/genética
16.
Genes (Basel) ; 13(4)2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35456424

RESUMO

Maize is an important cereal crop in the world for feed, food, fodder, and raw materials of industries. Turcicum leaf blight (TLB) is a major foliar disease that can cause more than 50% yield losses in maize. Considering this, the molecular diversity, population structure, and genome-wide association study (GWAS) for TLB resistance were studied in 288 diverse inbred lines genotyped using 89 polymorphic simple sequence repeats (SSR) markers. These lines werescreened for TLB disease at two hot-spot locations under artificially inoculated conditions. The average percent disease incidence (PDI) calculated for each genotype ranged from 17 (UMI 1201) to 78% (IML 12-22) with an overall mean of 40%. The numbers of alleles detected at a locus ranged from twoto nine, with a total of 388 alleles. The polymorphic information content (PIC) of each marker ranged between 0.04 and 0.86. Out of 89 markers, 47 markers were highly polymorphic (PIC ≥ 0.60). This indicated that the SSR markers used were very informative and suitable for genetic diversity, population structure, and marker-trait association studies.The overall observed homozygosity for highly polymorphic markers was 0.98, which indicated that lines used were genetically pure. Neighbor-joining clustering, factorial analysis, and population structure studies clustered the 288 lines into 3-5 groups. The patterns of grouping were in agreement with the origin and pedigree records of the genotypesto a greater extent.A total of 94.10% lines were successfully assigned to one or another group at a membership probability of ≥0.60. An analysis of molecular variance (AMOVA) revealed highly significant differences among populations and within individuals. Linkage disequilibrium for r2 and D' between loci ranged from 0 to 0.77 and 0 to 1, respectively. A marker trait association analysis carried out using a general linear model (GLM) and mixed linear model (MLM), identified 15 SSRs markers significantly associated with TLB resistance.These 15 markers were located on almost all chromosomes (Chr) except 7, 8, and 9. The phenotypic variation explained by these loci ranged from 6% (umc1367) to 26% (nc130, phi085). Maximum 7 associated markers were located together on Chr 2 and 5. The selected regions identified on Chr 2 and 5 corroborated the previous studies carried out in the Indian maize germplasm. Further, 11 candidate genes were identified to be associated with significant markers. The identified sources for TLB resistance and associated markers may be utilized in molecular breeding for the development of suitable genotypes.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Variação Genética , Genótipo , Desequilíbrio de Ligação , Zea mays/genética
17.
Physiol Mol Biol Plants ; 28(2): 485-504, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35400890

RESUMO

In agro-ecosystem, plant pathogens hamper food quality, crop yield, and global food security. Manipulation of naturally occurring defense mechanisms in host plants is an effective and sustainable approach for plant disease management. Various natural compounds, ranging from cell wall components to metabolic enzymes have been reported to protect plants from infection by pathogens and hence provide specific resistance to hosts against pathogens, termed as induced resistance. It involves various biochemical components, that play an important role in molecular and cellular signaling events occurring either before (elicitation) or after pathogen infection. The induction of reactive oxygen species, activation of defensive machinery of plants comprising of enzymatic and non-enzymatic antioxidative components, secondary metabolites, pathogenesis-related protein expression (e.g. chitinases and glucanases), phytoalexin production, modification in cell wall composition, melatonin production, carotenoids accumulation, and altered activity of polyamines are major induced changes in host plants during pathogen infection. Hence, the altered concentration of biochemical components in host plants restricts disease development. Such biochemical or metabolic markers can be harnessed for the development of "pathogen-proof" plants. Effective utilization of the key metabolites-based metabolic markers can pave the path for candidate gene identification. This present review discusses the valuable information for understanding the biochemical response mechanism of plants to cope with pathogens and genomics-metabolomics-based sustainable development of pathogen proof cultivars along with knowledge gaps and future perspectives to enhance sustainable agricultural production.

18.
Plants (Basel) ; 11(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35336681

RESUMO

Several maize breeding programs in India have developed numerous inbred lines but the lines have not been characterized using high-density molecular markers. Here, we studied the molecular diversity, population structure, and linkage disequilibrium (LD) patterns in a panel of 314 tropical normal corn, two sweet corn, and six popcorn inbred lines developed by 17 research centers in India, and 62 normal corn from the International Maize and Wheat Improvement Center (CIMMYT). The 384 inbred lines were genotyped with 60,227 polymorphic single nucleotide polymorphisms (SNPs). Most of the pair-wise relative kinship coefficients (58.5%) were equal or close to 0, which suggests the lack of redundancy in the genomic composition in the majority of inbred lines. Genetic distance among most pairs of lines (98.3%) varied from 0.20 to 0.34 as compared with just 1.7% of the pairs of lines that differed by <0.20, which suggests greater genetic variation even among sister lines. The overall average of 17% heterogeneity was observed in the panel indicated the need for further inbreeding in the high heterogeneous genotypes. The mean nucleotide diversity and frequency of polymorphic sites observed in the panel were 0.28 and 0.02, respectively. The model-based population structure, principal component analysis, and phylogenetic analysis revealed three to six groups with no clear patterns of clustering by centers-wise breeding lines, types of corn, kernel characteristics, maturity, plant height, and ear placement. However, genotypes were grouped partially based on their source germplasm from where they derived.

19.
Theor Appl Genet ; 135(11): 3875-3895, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35267056

RESUMO

KEY MESSAGE: Improving crop resistance against insect pests is crucial for ensuring future food security. Integrating genomics with modern breeding methods holds enormous potential in dissecting the genetic architecture of this complex trait and accelerating crop improvement. Insect resistance in crops has been a major research objective in several crop improvement programs. However, the use of conventional breeding methods to develop high-yielding cultivars with sustainable and durable insect pest resistance has been largely unsuccessful. The use of molecular markers for identification and deployment of insect resistance quantitative trait loci (QTLs) can fastrack traditional breeding methods. Till date, several QTLs for insect pest resistance have been identified in field-grown crops, and a few of them have been cloned by positional cloning approaches. Genome editing technologies, such as CRISPR/Cas9, are paving the way to tailor insect pest resistance loci for designing crops for the future. Here, we provide an overview of diverse defense mechanisms exerted by plants in response to insect pest attack, and review recent advances in genomics research and genetic improvements for insect pest resistance in major field crops. Finally, we discuss the scope for genomic breeding strategies to develop more durable insect pest resistant crops.


Assuntos
Edição de Genes , Genômica , Animais , Insetos
20.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269980

RESUMO

Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.


Assuntos
Melhoramento Vegetal , Triticum , Aclimatação , Adaptação Fisiológica , Resposta ao Choque Térmico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...