Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ginseng Res ; 43(2): 179-185, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30976158

RESUMO

BACKGROUND: Oxidative stress induces the production of reactive oxygen species (ROS), which play important causative roles in various pathological conditions. Black ginseng (BG), a type of steam-processed ginseng, has drawn significant attention due to its biological activity, and is more potent than white ginseng (WG) or red ginseng (RG). METHODS: We evaluated the protective effects of BG extract (BGE) against oxidative stress-induced cellular damage, in comparison with WG extract (WGE) and RG extract (RGE) in a cell culture model. Ethanolic extracts of WG, RG, and BG were used to evaluate ginsenoside profiles, total polyphenols, flavonoid contents, and antioxidant activity. Using AML-12 cells treated with H2O2, the protective effects of WGE, RGE, and BGE on cellular redox status, DNA, protein, lipid damage, and apoptosis levels were investigated. RESULTS: BGE exhibited significantly enhanced antioxidant potential, as well as total flavonoid and polyphenol contents. ATP levels were significantly higher in BGE-treated cells than in control; ROS generation and glutathione disulfide levels were lower but glutathione (GSH) and NADPH levels were higher in BGE-treated cells than in other groups. Pretreatment with BGE inhibited apoptosis and therefore protected cells from oxidative stress-induced cellular damage, probably through ROS scavenging. CONCLUSION: Collectively, our results demonstrate that BGE protects AML-12 cells from oxidative stress-induced cellular damages more effectively than WGE or RGE, through ROS scavenging, maintenance of redox status, and activation of the antioxidant defense system.

2.
Chemosphere ; 210: 1082-1090, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30208533

RESUMO

Most organisms simultaneously face various chemical and biological stresses in the environment. Herein, we investigated how pathogen infection modifies an organism's response to chemical exposure. To explore this phenomenon, we conducted a toxicity study combined with pathogen infection by using the nematode Caenorhabditis elegans, the pathogen Pseudomonas aeruginosa, and various environmental chemicals. C. elegans preinfected with PA01, when subsequently exposed to chemicals, became sensitized to the toxicity of nonylphenol (NP) and cadmium (Cd), whereas they became tolerant to the toxicity of silver nanoparticles (AgNPs); this led us to conduct a mechanistic study focusing on AgNP exposure. A gene expression profiling study revealed that most of the immune response genes activated by PA01 infection remained activated after subsequent exposure to AgNPs, thereby suggesting that the acquired tolerance of C. elegans to AgNP exposure may be due to boosted immunity resulting from PA01 preinfection. Further, a functional genetic analysis revealed that the immune response pathway (i.e., PMK-1/p38 MAPK) was involved in defense against AgNP exposure in PA01-preinfected C. elegans, thus suggesting immune and stress response crosstalk to xenobiotic exposure. This study will aid in the elucidation of how pathogen infection impacts the way the defense system responds to subsequent xenobiotic exposure.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Animais , Imunidade Inata/genética , Xenobióticos
3.
Int J Mol Sci ; 17(9)2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27571071

RESUMO

Our work aimed to investigate the protective effects of saponin-based nanoemulsions of vitamin A and E against oxidative stress-induced cellular damage in AML-12 cells. Saponin nanoemulsions of vitamin A (SAN) and vitamin E (SEN) were prepared by high-pressure homogenization and characterized in terms of size, zeta potential, and polydispersity index. SEN and SAN protect AML-12 cells against oxidative stress-induced cellular damage more efficiently via scavenging reactive oxygen species (ROS), and reducing DNA damage, protein carbonylation, and lipid peroxidation. These results provide valuable information for the development of nanoemulsion-based delivery systems that would improve the antioxidant properties of vitamin A and E.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Emulsões/química , Peróxido de Hidrogênio/farmacologia , Nanoestruturas/química , Saponinas/química , Vitamina A/química , Vitamina A/farmacologia , Vitamina E/química , Vitamina E/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA