Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0300134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547304

RESUMO

Virulent strain Pseudomonas aeruginosa isolated from Mahananda River exhibited the highest hemolytic activity and virulence factors and was pathogenic to fish as clinical signs of hemorrhagic spots, loss of scales, and fin erosions were found. S3 was cytotoxic to the human liver cell line (WRL-68) in the trypan blue dye exclusion assay. Genotype characterization using whole genome analysis showed that S3 was similar to P. aeruginosa PAO1. The draft genome sequence had an estimated length of 62,69,783 bp, a GC content of 66.3%, and contained 5916 coding sequences. Eight genes across the genome were predicted to be related to hemolysin action. Antibiotic resistance genes such as class C and class D beta-lactamases, fosA, APH, and catB were detected, along with the strong presence of multiple efflux system genes. This study shows that river water is contaminated by pathogenic P. aeruginosa harboring an array of virulence and antibiotic resistance genes which warrants periodic monitoring to prevent disease outbreaks.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Animais , Humanos , Antibacterianos/farmacologia , Pseudomonas aeruginosa , Rios , Virulência/genética
2.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37740438

RESUMO

AIM: Arsenic contamination in agricultural soils poses a serious health risk for humans. Bacteria that produce siderophores, primarily for iron acquisition, can be relevant in combating arsenic toxicity in agricultural soils and simultaneously act as biocontrol agents against plant diseases. We evaluated the arsenic bioremediation and biocontrol potential of the rhizosphere isolate Bacillus amyloliquefaciens BM3 and studied the interaction between the purified siderophore bacillibactin and arsenic. METHODS AND RESULTS: BM3 showed high arsenic resistance [MIC value 475 and 24 mM against As(V) and As(III), respectively] and broad spectrum in-vitro antagonism against several phytopathogenic fungi. BM3 was identified by biochemical characterization and 16S rRNA gene sequencing. Scanning electron microscopy (SEM) analysis revealed increased cell size of BM3 when grown in presence of sub-lethal arsenic concentrations. Bioremediation assays showed a 74% and 88.1% reduction in As(V) and As(III) concentrations, respectively. Genetic determinants for arsenic resistance (arsC and aoxB) and antifungal traits (bacAB and chiA) were detected by PCR. Arsenic chelating ability of bacillibactin, the siderophore purified from culture filtrate of BM3 and identified through spectroscopic data analysis, was observed in CAS assay and fluorescence spectrometry. In-vivo application of talc-based formulation of BM3 in brinjal seedlings showed significant reduction in Fusarium wilt disease. CONCLUSION: Strain B. amyloliquefaciens BM3 may be useful in arsenic bioremediation and may be considered for large field trials as an alternative to chemical fungicides by inhibiting soil borne pathogens.


Assuntos
Arsênio , Bacillus amyloliquefaciens , Fusarium , Solanum melongena , Humanos , Bacillus amyloliquefaciens/genética , Sideróforos , Fusarium/genética , Solanum melongena/genética , RNA Ribossômico 16S/genética , Plantas , Solo/química , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...