Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257264

RESUMO

A green method to synthesize cyclobutane derivatives has been developed over the past three decades in the form of solid-state [2+2] photochemical reactions. These solid-state reactions also play a major role in the structural transformation of hybrid materials. In this regard, crystal engineering has played a major role in designing photoreactive molecular systems. Here, we report three novel binuclear Cd(II) complexes with the molecular formula [Cd2(4spy)4L4], where 4spy = 4-styryl pyridine and L = p-toluate (1); 4-fluorobenzoate (2); and 3-fluorobenzoate (3). Although three different benzoates are used, all three complexes are isostructural, as corroborated through SCXRD experiments. Structural analysis also helped in identifying two potential photoreactions. These are both intra- and intermolecular in nature and are driven by the head-to-head (HH) and head-to-tail (HT) alignment of 4spy linkers within these metal complexes. 1H NMR spectroscopy studies showed evidence of a quantitative head-to-head photoreaction in all these three complexes, and SCXRD analysis of the recrystallization of the photoproducts also provided confirmation. TGA studies of these photoreactive complexes showed an increase in the thermal stability of the complexes due to the solid-state photoreaction. Photoluminescence studies of these complexes have been conducted, showing a blue shift in emission spectra across all three cases after the photoreaction.

2.
Dalton Trans ; 52(47): 17934-17941, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37982190

RESUMO

A photoactive two-dimensional coordination polymer (2D CP) [Zn2(4-spy)2(bdc)2]n (1) [4-spy = 4-styrylpyridine and H2bdc = 1,4-benzendicarboxylic acid] undergoes a photochemical [2 + 2] cycloaddition reaction upon UV irradiation. Interestingly, the crystals of 1 show different photomechanical effects, such as jumping, swelling, and splitting, during UV irradiation. In addition, the CP was employed for conductivity measurements before and after UV irradiation via current density-voltage characteristics and impedance spectroscopy, which suggest that they are semiconducting in nature and can be used as Schottky diodes. Thus, this work demonstrates the potential dual applications of a 2D CP based on photosalient and conductivity properties.

3.
Nanomaterials (Basel) ; 13(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37630906

RESUMO

Solid-state structural transformation is an interesting methodology used to prepare various metal-organic frameworks (MOFs) that are challenging to prepare in direct synthetic procedures. On the other hand, solid-state [2 + 2] photoreactions are distinctive methodologies used for light-driven solid-state transformations. Meanwhile, most of these photoreactions explored are quantitative in nature, in addition to them being stereo-selective and regio-specific in manner. In this work, we successfully synthesized two photoreactive novel binuclear Zn(II) MOFs, [Zn2(spy)2(tdc)2] (1) and [Zn2(spy)4(tdc)2] (2) (where spy = 4-styrylpyridine and tdc = 2,5-thiophenedicarboxylate) with different secondary building units. Both MOFs are interdigitated in nature and are 2D and 1D frameworks, respectively. Both the compounds showed 100% and 50% photoreaction upon UV irradiation, as estimated from the structural analysis for 1 and 2, respectively. This light-driven transformation resulted in the formation of 3D, [Zn2(rctt-ppcb)(tdc)2] (3), and 2D, [Zn2(spy)2(rctt-ppcb)(tdc)2] (4) (where rctt = regio, cis, trans, trans; ppcb = 1,3-bis(4'-pyridyl)-2,4-bis(phenyl)cyclobutane), respectively. These solid-state structural transformations were observed as an interesting post-synthetic modification. Overall, we successfully transformed novel lower-dimensional frameworks into higher-dimensional materials using a solid-state [2 + 2] photocycloaddition reaction.

4.
Commun Chem ; 6(1): 150, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452109

RESUMO

Dynamic photoactuating crystals have become a sensation due to their potential applications in developing smart medical devices, molecular machines, artificial muscles, flexible electronics actuators, probes and microrobots. Here we report the synthesis of two iso-structural metal-organic crystals, [Zn(4-ohbz)2(4-nvp)2] (1) and [Cd(4-ohbz)2(4-nvp)2] (2) {H4-ohbz = 4-hydroxy benzoic acid; 4-nvp = 4-(1-naphthylvinyl)pyridine} which undergo topochemical [2 + 2] cycloaddition under UV irradiation as well as sunlight to generate a dimerized product of discrete metal-complex [Zn(4-ohbz)2(rctt-4-pncb)] {rctt-4-pncb = 1,3-bis(4'-pyridyl)-2,4-bis(naphthyl)cyclobutane} (1') and one-dimensional coordination polymer (1D CP) [Cd(4-ohbz)2(rctt-4-pncb)] (2') respectively, in a single-crystal-to-single-crystal (SCSC) process. The Zn-based compound demonstrates photosalient behaviour, wherein crystals show jumping, splitting, rolling, and swelling upon UV irradiation. However, the Cd-based crystals do not show such behaviour maintaining the initial supramolecular packing and space group. Thus the photomechanical behaviour can be induced by choosing a suitable metal ion. The above findings are thoroughly validated by quantitative density functional theory (DFT) calculations which show that the Zn-based crystal shifts towards an orthorhombic structure to resolve the anisotropic UV-induced mechanical strain. Furthermore, the mechano-structure-property relationship has been established by complimentary nanoindentation measurements, which are in-line with the DFT-predicted single crystal values.

5.
Chem Commun (Camb) ; 59(29): 4384-4387, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946868

RESUMO

Single crystals of coordination complexes that show mechanical motion under the influence of external stimuli are of great interest due to their applications in photoactuators, sensors and probes. The solid-state [2+2] cycloaddition reaction has been one of the most prominent chemical reactions for photoresponsive materials in recent years. However, a relatively limited number of compounds have been reported, and most of these compounds have only shown destructive photosalient effects. Here, we report two photoreactive Zn(II) metal complexes with a thiophene-based photoreactive linker, 2tpy (4-(2-(thiophen-2-yl)vinyl)pyridine). In addition, under photoirradiation these complexes showed flagella-like bending, first towards and subsequently away from the excitation light source. This is the first report of metal-complexes and the solid-state [2+2] cycloaddition reaction that presents flagella-like motion in single crystals.

6.
Chem Commun (Camb) ; 57(75): 9538-9541, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34546251

RESUMO

Bent-shaped thienoacenes show promise as next-generation organic semiconductors. Here we present the synthesis of an air-stable, pure and easily scalable thiophene precursor, 2,5-distannylated-3,4-dialkyne thiophene, starting from 3,4-dialkyne thiophene in quantitative yields. This precursor has been used for the synthesis of a versatile class of syn-thienoacenes comprising up to 13 fused rings, helical acenes and donor-acceptor acenes.

7.
Org Biomol Chem ; 19(38): 8259-8263, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34532727

RESUMO

4-[(E)-3-Arylprop-2-enyl]phenols are omnipresent scaffolds and constitute natural products and biologically significant compounds. Obtusastyrene and obtustyrene are two such phenolic-based natural products isolated from Dalbergia retusa. The development of strategies based on a site-selective allylation, particularly protecting group-free substrates and non-activated coupling agents, is indispensable in organic synthesis. Herein, we present a highly regioselective [Pd]-catalyzed para-allylation of phenols using simple, inactivated allylic alcohols as allylating coupling partners. Notably, this strategy is successful in open-air and under mild reaction conditions. Besides, the efficacy of the present protocol was demonstrated by the direct synthesis of obtusastyrene and obtustyrene.


Assuntos
Fenóis , Catálise , Estrutura Molecular , Fenóis/química
8.
Int Endod J ; 54(10): 1878-1891, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34046919

RESUMO

AIM: To examine in a laboratory setting the efficacy of moderate to high strength magnetic fields, as a potential bacteriostatic stimulus, against Enterococcus faecalis, one of the causative agents for infection during root canal treatments. METHODOLOGY: Four different strengths (1, 2, 3 and 4 T) of the pulsed magnetic field (PMF) were applied in thirty repetitions to bacterial suspension. A pickup coil setup was used to measure the electromotive force induced inside the bacterial suspensions. The optical density (OD) was monitored over time (for 16 h 40 min) during the post-treatment period to assess bacterial growth. Along with the change in OD values, live/dead assay, membrane depolarization study, atomic force microscopy (AFM), scanning electron microscopy (SEM) and reactive oxygen species (ROS) assay on selected samples were studied to evaluate the effect of PMFs. All results were analysed using one-way ANOVA followed by post hoc Tukey test and considered significant at p < .05. Regression analysis (at a confidence of 95%, α = 0.05) was performed on the bacterial growth and membrane depolarization studies to determine progressive changes of the outcomes. RESULTS: The peak value of the induced electromotive force was recorded as 0.25 V, for the 4 T magnetic field pulse with a pulse width of 16 ms. There was a significant arrest of bacterial cell growth after an exposure to PMFs of 1 T, 3 T and 4 T (ANOVA score: F (4, 495) =395.180 at p = .05). The image-based qualitative results of the live/dead assay using fluorescence microscopy techniques indicated that an exposure to higher PMFs (3 T/ 4 T) induced a bacteriostatic effect in a longer post-exposure timescale. Evidence of altered membrane potential within the 2 h of exposure to 4 T PMF was supported by the incidence of elevated ROS. For the ROS assay, a significant difference occurred for 4 T exposed samples (ANOVA score: calculated F (1, 3) =20.2749 at p = .05). SEM and AFM observations corroborated with the outcomes, by portraying significant membrane damage. CONCLUSION: In a laboratory setting, PMFs with higher magnitudes (3 T and 4 T) were capable of inducing bacteriostatic effects on E. faecalis.


Assuntos
Biofilmes , Enterococcus faecalis , Campos Magnéticos , Microscopia Eletrônica de Varredura
9.
J Org Chem ; 85(14): 9029-9041, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32486646

RESUMO

The nucleophilic substitution on 3-substituted 2-methoxytropones to form azulenes is dependent on the nucleophile and base employed. With bulkier nucleophiles (ethyl/methyl cyanoacetate), the reaction proceeds with the abnormal nucleophilic substitution irrespective of the base and with smaller nucleophiles (malononitrile), the reaction follows base-dependent normal and abnormal nucleophilic substitution. Thus, the methodologies are developed to selectively obtain 4- and 5-substituted azulenes based on the nature of bases and nucleophiles employed.

10.
Phys Rev Lett ; 122(4): 047001, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768342

RESUMO

The hexatic fluid refers to a phase in between a solid and a liquid that has short-range positional order but quasi-long-range orientational order. In the celebrated theory of Berezinskii, Kosterlitz, and Thouless and subsequently refined by Halperin, Nelson, and Young, it was predicted that a two-dimensional hexagonal solid can melt in two steps: first, through a transformation from a solid to a hexatic fluid, which retains quasi-long-range orientational order; and then from a hexatic fluid to an isotropic liquid. In this Letter, using a combination of real space imaging and transport measurements, we show that the two-dimensional vortex lattice in an a-MoGe thin film follows this sequence of melting as the magnetic field is increased. Identifying the signatures of various transitions on the bulk transport properties of the superconductor, we construct a vortex phase diagram for a two-dimensional superconductor.

11.
Rev Sci Instrum ; 83(4): 045103, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22559572

RESUMO

Controlled waveform magnets (CWMs) are a class of pulsed magnets whose pulse shape with time can be programmed by the user. With a CWM, the user gains control not only over the magnitude of the field but also over its rate of change. In this work we present a table-top CWM, driven by a capacitor bank, capable of producing virtually any user-shaped magnetic field waveform up to 10 tesla. Insulated gate bipolar transistor chips have been paralleled to form the high current switch and paralleled chips of SiC Schottky diodes form the crowbar diode module. Sample controlled waveforms including flat-tops up to 10 tesla and some triangular magnetic field pulses have been successfully generated for 10-20 ms with a ripple <1%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...