Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37594111

RESUMO

BACKGROUND: Urinary tract infections (UTIs) are the most common form of nosocomial infection primarily caused by Escherichia coli. Complicated UTIs carry a higher risk of treatment failure, recurrent infections, and increased morbidity. Methionine aminopeptidase (MetAP) has gained tremendous importance as a bacterial drug target due to its role in cell growth and membrane integrity. However, the participation of metal-chelating residues and the occurrence of the enzyme in the human body complicate the process of selecting a suitable inhibitor. AIMS: This study aimed to find new molecules with more stable binding against urinary tract infection drug targets. OBJECTIVE: The objective of this study was to find new molecules with more stable binding against urinary tract infection drug targets using computational approaches. METHOD: The drug target was selected based on a literature study. Catechol derivatives were prepared and an ADME/T study was performed, followed by molecular docking and molecular dynamics. RESULT: The docking score of Met592 (-20.95) was found to be much better than that of known inhibitors (-12.88). The overall study on Rg signified that the ligand binding compels the respective proteins to become more compact and less flexible in the case of Met592. Binding free energy analysis also showed a better affinity for Met592 (-46.60) than the known inhibitor (-31.37). CONCLUSION: The increased binding score, good oral bioavailability, and better binding free energy endorse the reliability of the ligand Met592, i.e., (R, E)-4-(4-(2-(((9H-purin-6-yl)amino)methyl)- 4,5-dimethylphenyl)thiazol-2-yl)-4-aminobut-2-enoic acid, as the probable drug candidate to treat uropathogenic E. coli.

2.
Phytochem Anal ; 34(7): 855-868, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37337376

RESUMO

INTRODUCTION: Azadirachta indica A. Juss. is a well-known medicinal plant that has been used traditionally to cure various ailments in every corner of the globe. There are many in vitro and in vivo experimental evidences in connection with the bioactivity of the extracts of this plant. Lung cancer is the deadliest form of cancer and contributes to the most cancer related deaths. The mode of action of anticancer components of this plant is still to be established explicitly. OBJECTIVE: The objective of this study is to identify druggable targets of active constituents of A. indica A. Juss. for non-small cell lung cancer (NSCLC) using network pharmacology and validation of activity through molecular docking analysis. METHODOLOGY: Targets of all the active phytochemicals from A. indica were predicted and genes related to NSCLC were retrieved. A protein-protein interaction (PPI) network of the overlapping genes were prepared. Various databases and servers were employed to analyse the disease pathway enrichment analysis of the clustered genes. Validation of the gene/protein activity was achieved by performing molecular docking, and ADMET profiling of selected phytocompounds was performed. RESULT: Gene networking revealed three key target genes as EGFR, BRAF and PIK3CA against NSCLC by the active components of A. indica. Molecular docking and ADMET analysis further validated that desacetylnimbin, nimbandiol, nimbin, nimbinene, nimbolide, salannin and vepinin are the best suited anti- NSCLC among all the phytocompounds present in this plant. CONCLUSION: The present study has provided a better understanding of the pharmacological effects of active components from A. indica and its potential therapeutic effect on NSCLC.


Assuntos
Azadirachta , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Azadirachta/química , Farmacologia em Rede , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética
3.
Comb Chem High Throughput Screen ; 26(5): 863-879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35786332

RESUMO

Deadly disease cancer has many types; among them, lung cancer is responsible for the highest number of cancer mortality. Existing therapies as well as drugs for treating lung cancer are not effective and are often associated with innumerable side effects and toxicities. For these reasons, researchers have been working on developing novel anti-cancer medicines from plants and other natural sources that have a high safety profile. Natural flavonoids are a polyphenolic group of phytochemicals extracted from plants and other plant-derived compounds. Natural flavonoids are gaining popularity due to their unique and priceless medicinal properties, including anticancer properties. Several researchers have already declared that flavonoids possess the ability to treat different cancers, particularly lung cancer. The bioactivity of natural flavonoids is mainly due to their structural diversity. Natural flavonoids fight against lung cancer by regulating redox homeostasis, upregulating apoptosis, pro-apoptotic factors, and survival genes, arresting cell cycle progression, autophagy, reducing cell proliferation and invasiveness, maintaining inflammation response, downregulating anti-apoptotic factors, and targeting lung cancer signaling pathways. Flavonoids can act alone or synergistically with other agents to treat lung cancer. Due to these reasons, it is possible to use natural flavonoids as pharmaceutical leads to prevent and treat lung cancer.


Assuntos
Flavonoides , Neoplasias Pulmonares , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/prevenção & controle , Plantas , Proliferação de Células , Apoptose
4.
Comb Chem High Throughput Screen ; 26(5): 880-891, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35611786

RESUMO

Indian Arrowroot (Curcuma angustifolia Roxb) belonging to the Zingiberaceae family is widely distributed in India and some parts of Nepal, Thailand, Bangladesh and Pakistan. It is traditionally used as medicine for treating various diseases and also used as food. Few data are available about its application in pharmacology and therapeutics. Literature search for related contents, keywords such as "Curcuma angustifolia Roxb", "traditional food", "ethnomedicine", "pharmacology", "phytochemicals", "pharmacological activities" were used in search engines including PubMed, Google Scholar, Scopus, ScienceDirect, and Semantic Scholar. Secondary metabolites found in Indian Arrowroot include essential oils, alkaloids, flavonoids, terpenoids, phytosterols, terpenes, phenols, and others. Pharmacological activities such as antioxidant, antiinflammatory, anti-proliferative, anti-ulcerogenic, hepatoprotective, and anti-cancerous activities have been shown by Indian Arrowroot (Curcuma angustifolia Roxb). The presence of nutritional value and pharmaceutical potential gained demand in the various food production industries and pharmacology research. It may play a vital role in future studies of Curcuma angustifolia Roxb as ethnomedicine and further exploitation in pharmacological studies.


Assuntos
Marantaceae , Fitoterapia , Curcuma/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Terpenos
5.
J Ethnopharmacol ; 300: 115729, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36162544

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The North-eastern parts of India have immense therapeutic floras, Ottelia alismoides is an aquatic plant that has been in use for a long time in traditional medicine for treating diseases like cancer, tuberculosis, diabetes, febrifuge, hemorrhoids, and rubefacient. In lung and skin carcinoma cells with a high rate of proliferation and metastasis including drug resistance and non-specific target activity, generates important challenges towards their treatment strategy. Thus, finding novel therapeutic targets to treat lung and skin cancer progression is essential to enhance the patients' survival with treatment. AIM OF THE STUDY: The purpose of this study was to evaluate the apoptotic potential of acetone extract of O. alismoides (L.) Pers. (OA-AC) and to identify the compounds responsible for this effect, HRLC-MS-QTOF analysis of the extract has been undertaken along with in-silico molecular docking analysis of the identified compounds. MATERIALS AND METHODS: A549 and A431 cells were treated with acetone extract of O. alismoides (OA-AC) at 24 h and 48 h exposure and cell cycle phase distribution was evaluated and also apoptosis induction activity was evaluated by OA-EtBr staining and Mitochondrial outer membrane potential assay. Western blotting was performed for the evaluation of apoptotic protein expression. At last, the HR-LCMS of OA-AC was analyzed to identify the compounds responsible for the apoptotic activity of the extract. RESULTS: The cell cycle phase distribution analysis in A549 and A431 cells at 24hrs exposure with 10 µg/mL and 25 µg/mL of OA-AC showed a potent arrest or blockage at the G2/M phase of the cell cycle with reduced expression of cyclin B and p-Cdc2. At 48 h exposure, apoptosis was observed in these cancer cells with elevated expression of Bax, p21 and cleaved caspase 3 and reduced expression of the Bcl2. CONCLUSION: AO-EtBr staining of these cancer cells reveals that the death induced by OA-AC was apoptotic in nature with depolarization of mitochondrial membrane due to loss or damage of the mitochondrial membrane. The HRLC-MS-QTOF analysis of OA-AC depicted 14 major isolable compounds and molecular docking analysis displayed 4 compounds that might act as an inhibitor of cyclin B for G2/M phase arrest that leads to apoptotic induction in the cells.


Assuntos
Carcinoma , Hydrocharitaceae , Acetona , Apoptose , Carcinoma/tratamento farmacológico , Caspase 3 , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Hydrocharitaceae/metabolismo , Irritantes , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2
6.
Expert Rev Vaccines ; 21(8): 1071-1086, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35604776

RESUMO

INTRODUCTION: Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as one of the biggest global health issues. Spike protein (S) and nucleoprotein (N), the major immunogenic components of SARS-CoV-2, have been shown to be involved in the attachment and replication of the virus inside the host cell. AREAS COVERED: Several investigations have shown that the SARS-CoV-2 nucleoprotein can elicit a cell-mediated immune response capable of regulating viral replication and lowering viral burden. However, the development of an effective vaccine that can stop the transmission of SARS-CoV-2 remains a matter of concern. Literature was retrieved using the keywords COVID-19 vaccine, role of nucleoprotein as vaccine candidate, spike protein, nucleoprotein immune responses against SARS-CoV-2, and chimera vaccine in PubMed, Google Scholar, and Google. EXPERT OPINION: We have focussed on the use of chimera protein, consisting of N and S-1 protein components of SARS-CoV-2, as a potential vaccine candidate. This may act as a polyvalent mixed recombinant protein vaccine to elicit a strong T and B cell immune response, which will be capable of neutralizing the wild and mutated variants of SARS-CoV-2, and also restricting its attachment, replication, and budding in the host cell.


Assuntos
COVID-19 , Proteínas Virais de Fusão , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Nucleoproteínas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
7.
BMC Med Genomics ; 15(1): 42, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241081

RESUMO

BACKGROUND: Atherosclerosis is one of the major causes of cardiovascular disease. It is characterized by the accumulation of atherosclerotic plaque in arteries under the influence of inflammatory responses, proliferation of smooth muscle cell, accumulation of modified low density lipoprotein. The pathophysiology of atherosclerosis involves the interplay of a number of genes and metabolic pathways. In traditional translation method, only a limited number of genes and pathways can be studied at once. However, the new paradigm of network medicine can be explored to study the interaction of a large array of genes and their functional partners and their connections with the concerned disease pathogenesis. Thus, in our study we employed a branch of network medicine, gene network analysis as a tool to identify the most crucial genes and the miRNAs that regulate these genes at the post transcriptional level responsible for pathogenesis of atherosclerosis. RESULT: From NCBI database 988 atherosclerotic genes were retrieved. The protein-protein interaction using STRING database resulted in 22,693 PPI interactions among 872 nodes (genes) at different confidence score. The cluster analysis of the 872 genes using MCODE, a plug-in of Cytoscape software revealed a total of 18 clusters, the topological parameter and gene ontology analysis facilitated in the selection of four influential genes viz., AGT, LPL, ITGB2, IRS1 from cluster 3. Further, the miRNAs (miR-26, miR-27, and miR-29 families) targeting these genes were obtained by employing MIENTURNET webtool. CONCLUSION: Gene network analysis assisted in filtering out the 4 probable influential genes and 3 miRNA families in the pathogenesis of atherosclerosis. These genes, miRNAs can be targeted to restrict the occurrence of atherosclerosis. Given the importance of atherosclerosis, any approach in the understanding the genes involved in its pathogenesis can substantially enhance the health care system.


Assuntos
Aterosclerose , MicroRNAs , Aterosclerose/genética , Aterosclerose/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Mapas de Interação de Proteínas/genética
8.
Sci Rep ; 12(1): 1348, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079093

RESUMO

Colistin resistance has increased due to the increasing and inappropriate use of this antibiotic. The mechanism involves modification of lipid A with phosphoethanolamine (PEtN) and/or 4-amino-4deoxy-L-arabinose (L-Ara4N). EptA and eptB catalyze the transfer of phosphoethanolamine to lipid A. In this study, gene network was constructed to find the associated genes related to colistin resistance, and further in vitro validation by transcriptional analysis was performed. In silico studies showed that eptB gene is a highly interconnected node in colistin resistance gene network. To ascertain these findings twelve colistin-resistant clinical isolates of Escherichia coli were selected in which five were harboring the plasmid-mediated mcr-1. Screening for colistin resistance was performed by broth microdilution (BMD) method and Rapid polymyxin NP test. PCR confirmed the presence of the eptA and eptB genes in all isolates and five isolates were harboring mcr-1. Transcriptional expression in five isolates harboring mcr-1, showed an enhanced expression of eptB when exposed under sub-inhibitory colistin stress. The present study for the first time highlighted genetic interplay between mcr-1 and eptA and eptB under colistin exposure.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
9.
BMC Microbiol ; 21(1): 79, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750290

RESUMO

BACKGROUND: The issue of carbapenem resistance in E.coli is very concerning and it is speculated that cumulative effect of both primary resistance genes and secondary resistance genes that act as helper to the primary resistance genes are the reason behind their aggravation. Therefore, here we attempted to find the role of two secondary resistance genes (SRG) ccdB and repA2 in carbapenem resistance in E. coli (CRE). In this context influential genes belonging to secondary resistome that act as helper to the primary resistance genes like blaNDM and blaCTX-M in aggravating ß-lactam resistance were selected from an earlier reported in silico study. Transcriptional expression of the selected genes in clinical isolates of E.coli that were discretely harboring blaNDM-1, blaNDM-4, blaNDM-5, blaNDM-7 and blaCTX-M-15 with and without carbapenem and cephalosporin stress (2 µg/ml) was determined by real time PCR. Cured mutants sets that were lacking (i) primary resistance genes, (ii) secondary resistance genes and (iii) both primary and secondary resistance genes were prepared by SDS treatment. These sets were then subjected to antibiotic susceptibility testing by Kirby Bauer disc diffusion method. RESULTS: Out of the 21 genes reported in the in silico study, 2 genes viz. repA2 and ccdB were selected for transcriptional expression analysis. repA2, coding replication regulatory protein, was downregulated in response to carbapenems and cephalosporins. ccdB, coding for plasmid maintenance protein, was also downregulated in response to carbapenems except imipenem and cephalosporins. Following plasmid elimination assay increase in diameter of zone of inhibition under stress of both antibiotics was observed as compared to uncured control hinting at the reversion of antibiotic susceptibility by the-then resistant bacteria. CONCLUSION: SRGs repA2 and ccdB help sustenance of blaNDM and blaCTX-M under carbapenem and cephalosporin stress.


Assuntos
Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
10.
Front Pharmacol ; 10: 509, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178720

RESUMO

The liver is not only involved in metabolism and detoxification, but also participate in innate immune function and thus exposed to frequent target Thus, they are the frequent target of physical injury. Interestingly, liver has the unique ability to regenerate and completely recoup from most acute, non-iterative situation. However, multiple conditions, including viral hepatitis, non-alcoholic fatty liver disease, long term alcohol abuse and chronic use of medications can cause persistent injury in which regenerative capacity eventually becomes dysfunctional resulting in hepatic scaring and cirrhosis. Despite the recent therapeutic advances and significant development of modern medicine, hepatic diseases remain a health problem worldwide. Thus, the search for the new therapeutic agents to treat liver disease is still in demand. Many synthetic drugs have been demonstrated to be strong radical scavengers, but they are also carcinogenic and cause liver damage. Present day various hepatic problems are encountered with number of synthetic and plant based drugs. Nexavar (sorafenib) is a chemotherapeutic medication used to treat advanced renal cell carcinoma associated with several side effects. There are a few effective varieties of herbal preparation like Liv-52, silymarin and Stronger neomin phages (SNMC) against hepatic complications. Plants are the huge repository of bioactive secondary metabolites viz; phenol, flavonoid, alkaloid etc. In this review we will try to present exclusive study on phenolics with its mode of action mitigating liver associated complications. And also its future prospects as new drug lead.

11.
Indian J Med Microbiol ; 35(1): 137-139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28303836

RESUMO

This study was undertaken to investigate OprD porin-mediated carbapenem nonsusceptibility in clinical isolates of Pseudomonas aeruginosa from a tertiary referral hospital of Northeast India. A total of 267 nonduplicate, consecutive clinical isolates of P. aeruginosa were obtained. Mutation and expression levels of OprD gene were determined in carbapenem-nonsusceptible carbapenemase-nonproducing isolates. Among 19 carbapenem-nonsusceptible carbapenemase-nonproducing isolates, 11 of them demonstrated variable band pattern while performing denaturing gradient gel electrophoresis with amplified products of OprD gene. Sequencing of variable band products revealed three mutation patterns in three isolates. Relevant decrease in expression of OprD gene could also be observed in them. All the three isolates exhibited a higher minimum inhibitory concentration for imipenem (64-128 µg/mL) compared to meropenem (16-64 µg/mL). Inactivating mutation and decreased expression of OprD contribute mainly to imipenem resistance as well as to meropenem.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Porinas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Eletroforese , Perfilação da Expressão Gênica , Técnicas de Genotipagem , Humanos , Imipenem/farmacologia , Índia , Testes de Sensibilidade Microbiana , Mutação , Pseudomonas aeruginosa/isolamento & purificação , Análise de Sequência de DNA , Centros de Atenção Terciária
12.
Neurochem Int ; 108: 15-26, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28167224

RESUMO

The symptoms of Parkinson's disease (PD) include motor behavioral abnormalities, which appear as a result of the extensive loss of the striatal biogenic amine, dopamine. Various endogenous molecules, including cholesterol, have been put forward as putative contributors in the pathogenesis of PD. Earlier reports have provided a strong link between the elevated level of plasma cholesterol (hypercholesterolemia) and onset of PD. However, the role of hypercholesterolemia on brain functions in terms of neurotransmitter metabolism and associated behavioral manifestations remain elusive. We tested in Swiss albino mice whether hypercholesterolemia induced by high-cholesterol diet would affect dopamine and serotonin metabolism in discrete brain regions that would precipitate in psychomotor behavioral manifestations. High-cholesterol diet for 12 weeks caused a significant increase in blood total cholesterol level, which validated the model as hypercholesterolemic. Tests for akinesia, catalepsy, swimming ability and gait pattern (increased stride length) have revealed that hypercholesterolemic mice develop motor behavioral abnormalities, which are similar to the behavioral phenotypes of PD. Moreover, hypercholesterolemia caused depressive-like behavior in mice, as indicated by the increased immobility time in the forced swim test. We found a significant depletion of dopamine in striatum and serotonin in cortex of hypercholesterolemic mice. The significant decrease in tyrosine hydroxylase immunoreactivity in striatum supports the observed depleted level dopamine in striatum, which is relevant to the pathophysiology of PD. In conclusion, hypercholesterolemia-induced depleted levels of cortical and striatal biogenic amines reported hereby are similar to the PD pathology, which might be associated with the observed psychomotor behavioral abnormalities.


Assuntos
Aminas Biogênicas/metabolismo , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Hipercolesterolemia/metabolismo , Doença de Parkinson/metabolismo , Transtornos Psicomotores/metabolismo , Animais , Córtex Cerebral/patologia , Colesterol/metabolismo , Corpo Estriado/patologia , Hipercolesterolemia/patologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Neurotransmissores/metabolismo , Doença de Parkinson/patologia , Transtornos Psicomotores/patologia
13.
Infect Genet Evol ; 48: 34-39, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27964935

RESUMO

Two Klebsiella strains isolated from urine samples were positive for blaAmpC by PCR and showed sequence similarity with CMH-1 (98.6%) after sequencing. It also shares 82% similarity with ACT-1, 85% with MIR-1 and 81% with the chromosomal AmpC gene of Enterobacter cloacae. This gene was associated with the plasmid of IncK type. It has an open reading frame of 381 amino acid with four amino acid substitutions at position D144A, C189R, Q192E, and A195T as compared to CMH-1. When expressed in E.coli DH5α and E.coli strain B, this ß-lactamase conferred resistance to cefotaxime, ceftriaxone and ceftazidime. In addition, both in vitro and in silico analysis revealed that this cephalosporinase was inhibited by cefepime and carbapenem group of drugs. Therefore, this new plasmid-encoded AmpC type ß-lactamase gene was designated as CMH-2.


Assuntos
Proteínas de Bactérias/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Domínio Catalítico , Simulação por Computador , Farmacorresistência Bacteriana/genética , Humanos , Klebsiella pneumoniae/enzimologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , beta-Lactamases/química , beta-Lactamas/farmacologia
15.
J Pharm Pharmacol ; 68(12): 1481-1500, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27747859

RESUMO

OBJECTIVES: Nanotechnology-based drug delivery systems can resolve the poor bioavailability issue allied with curcumin. The therapeutic potential of curcumin can be enhanced by making nanocomposite preparation of curcumin with metal oxide nanoparticles, poly lactic-co-glycolic acid (PLGA) nanoparticles and solid lipid nanoparticles that increases its bioavailability in the tissue. KEY FINDINGS: Curcumin has manifold therapeutic effects which include antidiabetic, antihypertensive, anticancer, anti-inflammatory and antimicrobial properties. Curcumin can inhibit diabetes, heavy metal and stress-induced hypertension with its antioxidant, chelating and inhibitory effects on the pathways that lead to hypertension. Curcumin is an anticancer agent that can prevent abnormal cell proliferation. Nanocurcumin is an improved form of curcumin with enhanced therapeutic properties due to improved delivery to the diseased tissue, better internalization and reduced systemic elimination. SUMMARY: Curcumin has multiple pharmacologic effects, but its poor bioavailability reduces its therapeutic effects. By conjugating curcumin to metal oxide nanoparticles or encapsulation in lipid nanoparticles, dendrimers, nanogels and polymeric nanoparticles, the water solubility and bioavailability of curcumin can be improved and thus increase its pharmacological effectiveness.


Assuntos
Curcumina/uso terapêutico , Portadores de Fármacos , Ácido Láctico/química , Lipídeos/química , Nanopartículas Metálicas , Nanotecnologia , Óxidos/química , Extratos Vegetais/uso terapêutico , Ácido Poliglicólico/química , Tecnologia Farmacêutica/métodos , Administração Oral , Animais , Disponibilidade Biológica , Curcumina/administração & dosagem , Curcumina/química , Curcumina/farmacocinética , Composição de Medicamentos , Humanos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Solubilidade
16.
Fish Physiol Biochem ; 42(6): 1791-1805, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27378480

RESUMO

Blood being a vehicle for the transport of industrial pollutants in living system, fish hematology is considered as potent biomarker. In the present study, we investigated respective sublethal effects of pulp and paper mill effluents on hematology of two commonly cultured carps, Cyprinus carpio and Ctenopharyngodon idella, using optical, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Irrespective of species, results showed significant decrease in erythrocyte, hematocrit and hemoglobin contents while an increase in white blood cell counts (P < 0.05). We observed an increasing trend of MCV (170.0 ± 3.07 to 193.16 ± 2.5) and MCH (34.31 ± 1.89 to 38.71 ± 3.61) up to 28th day in C. carpio (P < 0.05), while, in C. idella, the highest percent increase in MCV (180.8 ± 2.19) and MCH (32.9 ± 0.62) was observed on seventh exposure day, which subsequently declined, respectively, to 173.1 ± 17.1 and 27.9 ± 2.45 on 28th day. Unlike C. carpio, significant and progressive MCHC declining trend (18.23 ± 0.28 to 16.13 ± 0.31) was observed in C. idella. The most commonly observed abnormalities under SEM include echinocytes, cytoplasmic blebbing, cytoplasmic ring, spherocytes, lobopodial projections and acanthocytes in red blood cells of exposed fishes. EDS further revealed the presence of aluminum, antimony, arsenic, cadmium, mercury, tungsten, zinc and titanium; some of these metals were not even detected in the effluent samples, suggesting the probable metal bio-concentration in fish tissue, and subsequent jeopardization is a major concern particularly in the industrial area. Our study further suggested the use of sensitive and specific techniques like SEM and EDS in fish hematological biomarker analysis along with the conventional approach.


Assuntos
Carpas/sangue , Resíduos Industriais/efeitos adversos , Papel , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cloretos/análise , Cloretos/toxicidade , Cloro/análise , Cloro/toxicidade , Testes Hematológicos , Hemoglobinas/análise , Resíduos Industriais/análise , Metais/análise , Metais/toxicidade , Microscopia Eletrônica de Varredura , Nitritos/análise , Nitritos/toxicidade , Espectrometria por Raios X , Sulfitos/análise , Sulfitos/toxicidade , Águas Residuárias/análise , Poluentes Químicos da Água/análise
17.
Comb Chem High Throughput Screen ; 19(9): 705-713, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27450181

RESUMO

AIM AND OBJECTIVE: Overexpression of efflux pumps belonging to the Resistance Nodulation cell Division (RND) family is the most important intrinsic resistance mechanism of Pseudomonas aeruginosa. Hence, it is imperative to identify suitable efflux pump inhibitors (EPI) that can lead to increased intracellular concentration of antibiotics by blocking the pump. This study was undertaken to identify a putative plant based efflux pump inhibitor for RND efflux pump of P. aeruginosa. MATERIAL AND METHOD: Using molecular docking approach, 328 secondary plant metabolites have been screened for their inhibitory activity against cytoplasmic exporter protein MexB of MexAB-OprM efflux pump of P. aeruginosa. After the initial in silico screening, the shortlisted compounds were subjected to in vitro test for efflux pump inhibitory activity using double disc synergy test. A combinatorial library of 1000 molecules was generated from active p-coumaric acid and docked with MexB protein to find a suitable EPI with better binding efficacy compared to the p-coumaric acid. RESULTS: Preliminary screening resulted in five plant-based natural products with significant docking score and were subsequently subjected to double disc synergy test. p-Coumaric acid , amongst the five, was found to potentiate activity of ciprofloxacin in MexAB-OprM overexpressing P. aeruginosa strain. Library compound 482, i.e 4-(4-((Z)-2-carboxy-2-((Z)-2,3-dihydrobenzo[e][1,4]diazepin-1-yl)-1-(4- hydroxyphenyl)vinylamino) phenylsulfonamido)-2-hydroxybenzoic acid, a derivative of p-coumaric acid exhibited the highest docking score of -42.1030 Kcal/mol, which was much higher than parent compound (-17.9403 Kcal/mol) and also known EPI, MC-207,110 (-28.0960 Kcal/mol). CONCLUSION: p-Coumaric acid and its derivative, 4-(4-((Z)-2-carboxy-2-((Z)-2,3-dihydrobenzo[e][1,4] diazepin-1-yl)-1-(4-hydroxyphenyl)vinylamino)phenylsulfonamido)-2-hydroxybenzoic acid may be used as potential lead molecules for effective RND efflux pump inhibition in P. aeruginosa.


Assuntos
Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Produtos Biológicos/química , Farmacorresistência Bacteriana Múltipla , Ensaios de Triagem em Larga Escala/métodos , Antibacterianos/metabolismo , Proteínas de Bactérias/efeitos dos fármacos , Técnicas de Química Combinatória , Ácidos Cumáricos/química , Moduladores de Transporte de Membrana , Proteínas de Membrana Transportadoras , Simulação de Acoplamento Molecular , Plantas/química , Propionatos , Pseudomonas aeruginosa/química , Bibliotecas de Moléculas Pequenas
19.
J Ethnopharmacol ; 175: 192-7, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26387738

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Being one of the most common types of life threatening diseases in Southern Assam, India, the digestive system disorders (DSD) have gained much attention in recent decades. Traditional beliefs and inadequate income of mass population result in the use of alternative phytotherapies to treat the diseases. AIM OF THE STUDY: The present paper documents the medicinal knowledge and utilization of plants for treatment of digestive system disorders in Southern Assam, India by Disease Consensus Index (DCI). It also determines the most suitable plant species used to treat digestive system disorders in the study area. MATERIALS AND METHODS: The study was based on ethnomedicinal field survey covering a period of 1 year from 2014-2015. The ethnomedicinal information was collected by using semi-structured questionnaires from different traditional Bengali people having knowledge on medicinal plants. Collected data were analyzed by calculating DCI. RESULTS: During the survey, 29 informants were interviewed and a total of 49 plants under 46 genera belonging to 33 families were listed. Data analysis revealed that Litsea glutinosa, Momordica charantia, Andrographis paniculata, Lawsonia inermis, Cleome viscosa, Psidium guajava, Ageratum conyzoides, Cuscuta reflexa, Cynodon dactylon and Carica papaya are the most prominent plants among the people of Southern Assam for treating DSD. CONCLUSION: This explorative survey emphasizes the need to preserve and document the traditional healing practices for managing DSD inviting for more imminent scientific research on the plants to determine their efficacy as well as safety. With the help of statistical analysis (DCI), we propose 10 priority plants for DSD in present work. Systematic pharmacological study with these plants may contribute significant result.


Assuntos
Gastroenteropatias/tratamento farmacológico , Plantas Medicinais , Feminino , Humanos , Índia , Masculino , Medicina Tradicional , Fitoterapia , Inquéritos e Questionários
20.
J Mol Model ; 21(3): 37, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25663521

RESUMO

Malaria is an infectious disease caused by parasites of the genus Plasmodium. It leads to approximately 1 million deaths per annum worldwide, with an increase number of 6.27 million deaths in 2012 alone. Validation of new antimalarial targets is very important in the context of the rise in resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase (NMT), which catalyzes the attachment of the fatty acid myristate to protein substrates (N-myristoylation) for activation. Reports suggests that NMT is an essential and chemically docile target in malaria parasites both in vitro and in vivo, and the selective inhibition of N-myristoylation leads to irreversible failure to form an inner membrane complex­an essential subcellular organelle in the parasite life cycle. In this work, we modeled the three-dimensional structure of Plasmodium falciparum NMT (PfNMT) using Modeler 9.0 taking Plasmodium vivax NMT (PvNMT) as the template. The novelty of the work lies in the selection of template as the similarity of PfNMT with PvNMT was 80.47%, whereas earlier similar work showed template similarity with Candida albicans NMT (CaNMT) and Saccharomyces cerevisiae NMT (ScNMT) to be less than 50%. The generated structure was then validated using various programs such as PROCHECK, RAMPAGE server, CHIMERA and the stability of the model was checked by Gromacs 5.0.


Assuntos
Aciltransferases/química , Antimaláricos/química , Malária/tratamento farmacológico , Plasmodium falciparum/enzimologia , Aciltransferases/efeitos dos fármacos , Sequência de Aminoácidos , Antimaláricos/uso terapêutico , Candida albicans/enzimologia , Desenho de Fármacos , Humanos , Malária/parasitologia , Simulação de Dinâmica Molecular , Ácido Mirístico/química , Ácido Mirístico/metabolismo , Plasmodium falciparum/química , Plasmodium vivax/enzimologia , Conformação Proteica/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...