Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 241(2): 911-925, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921572

RESUMO

Introgression is an important source of genetic variation that can determine species adaptation to environmental conditions. Yet, definitive evidence of the genomic and adaptive implications of introgression in nature remains scarce. The widespread hybrid zones of Darwin's primroses (Primula elatior, Primula veris, and Primula vulgaris) provide a unique natural laboratory for studying introgression in flowering plants and the varying permeability of species boundaries. Through analysis of 650 genomes, we provide evidence of an introgressed genomic region likely to confer adaptive advantage in conditions of soil toxicity. We also document unequivocal evidence of chloroplast introgression, an important precursor to species-wide chloroplast capture. Finally, we provide the first evidence that the S-locus supergene, which controls heterostyly in primroses, does not introgress in this clade. Our results contribute novel insights into the adaptive role of introgression and demonstrate the importance of extensive genomic and geographical sampling for illuminating the complex nature of species boundaries.


Assuntos
Magnoliopsida , Primula , Primula/genética , Genoma , Genômica , Magnoliopsida/genética , Cromossomos , Hibridização Genética
2.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35143659

RESUMO

Supergenes are nonrecombining genomic regions ensuring the coinheritance of multiple, coadapted genes. Despite the importance of supergenes in adaptation, little is known on how they originate. A classic example of supergene is the S locus controlling heterostyly, a floral heteromorphism occurring in 28 angiosperm families. In Primula, heterostyly is characterized by the cooccurrence of two complementary, self-incompatible floral morphs and is controlled by five genes clustered in the hemizygous, ca. 300-kb S locus. Here, we present the first chromosome-scale genome assembly of any heterostylous species, that of Primula veris (cowslip). By leveraging the high contiguity of the P. veris assembly and comparative genomic analyses, we demonstrated that the S-locus evolved via multiple, asynchronous gene duplications and independent gene translocations. Furthermore, we discovered a new whole-genome duplication in Ericales that is specific to the Primula lineage. We also propose a mechanism for the origin of S-locus hemizygosity via nonhomologous recombination involving the newly discovered two pairs of CFB genes flanking the S locus. Finally, we detected only weak signatures of degeneration in the S locus, as predicted for hemizygous supergenes. The present study provides a useful resource for future research addressing key questions on the evolution of supergenes in general and the S locus in particular: How do supergenes arise? What is the role of genome architecture in the evolution of complex adaptations? Is the molecular architecture of heterostyly supergenes across angiosperms similar to that of Primula?


Assuntos
Flores , Primula , Cromossomos , Flores/genética , Duplicação Gênica , Genômica , Humanos , Primula/genética
3.
Nat Commun ; 12(1): 4979, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404804

RESUMO

Relative contributions of pre-existing vs de novo genomic variation to adaptation are poorly understood, especially in polyploid organisms. We assess this in high resolution using autotetraploid Arabidopsis arenosa, which repeatedly adapted to toxic serpentine soils that exhibit skewed elemental profiles. Leveraging a fivefold replicated serpentine invasion, we assess selection on SNPs and structural variants (TEs) in 78 resequenced individuals and discover significant parallelism in candidate genes involved in ion homeostasis. We further model parallel selection and infer repeated sweeps on a shared pool of variants in nearly all these loci, supporting theoretical expectations. A single striking exception is represented by TWO PORE CHANNEL 1, which exhibits convergent evolution from independent de novo mutations at an identical, otherwise conserved site at the calcium channel selectivity gate. Taken together, this suggests that polyploid populations can rapidly adapt to environmental extremes, calling on both pre-existing variation and novel polymorphisms.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Alelos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Genoma de Planta , Poliploidia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Mutação , Polimorfismo de Nucleotídeo Único , Alcaloides de Triptamina e Secologanina/metabolismo , Solo/química
4.
Mob DNA ; 12(1): 7, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33639991

RESUMO

BACKGROUND: Plant genomes can respond rapidly to environmental changes and transposable elements (TEs) arise as important drivers contributing to genome dynamics. Although some elements were reported to be induced by various abiotic or biotic factors, there is a lack of general understanding on how environment influences the activity and diversity of TEs. Here, we combined common garden experiment with short-read sequencing to investigate genomic abundance and expression of 2245 consensus TE sequences (containing retrotransposons and DNA transposons) in an alpine environment in Arabidopsis arenosa. To disentangle general trends from local differentiation, we leveraged four foothill-alpine population pairs from different mountain regions. Seeds of each of the eight populations were raised under four treatments that differed in temperature and irradiance, two factors varying with elevation. RNA-seq analysis was performed on leaves of young plants to test for the effect of elevation and subsequently of temperature and irradiance on expression of TE sequences. RESULTS: Genomic abundance of the 2245 consensus TE sequences varied greatly between the mountain regions in line with neutral divergence among the regions, representing distinct genetic lineages of A. arenosa. Accounting for intraspecific variation in abundance, we found consistent transcriptomic response for some TE sequences across the different pairs of foothill-alpine populations suggesting parallelism in TE expression. In particular expression of retrotransposon LTR Copia (e.g. Ivana and Ale clades) and LTR Gypsy (e.g. Athila and CRM clades) but also non-LTR LINE or DNA transposon TIR MuDR consistently varied with elevation of origin. TE sequences responding specifically to temperature and irradiance belonged to the same classes as well as additional TE clades containing potentially stress-responsive elements (e.g. LTR Copia Sire and Tar, LTR Gypsy Reina). CONCLUSIONS: Our study demonstrated that the A. arenosa genome harbours a considerable diversity of TE sequences whose abundance and expression response varies across its native range. Some TE clades may contain transcriptionally active elements responding to a natural environmental gradient. This may further contribute to genetic variation between populations and may ultimately provide new regulatory mechanisms to face environmental challenges.

5.
Proc Natl Acad Sci U S A ; 116(10): 4416-4425, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30787193

RESUMO

A fundamental tenet of multicellular eukaryotic evolution is that vertical inheritance is paramount, with natural selection acting on genetic variants transferred from parents to offspring. This lineal process means that an organism's adaptive potential can be restricted by its evolutionary history, the amount of standing genetic variation, and its mutation rate. Lateral gene transfer (LGT) theoretically provides a mechanism to bypass many of these limitations, but the evolutionary importance and frequency of this process in multicellular eukaryotes, such as plants, remains debated. We address this issue by assembling a chromosome-level genome for the grass Alloteropsis semialata, a species surmised to exhibit two LGTs, and screen it for other grass-to-grass LGTs using genomic data from 146 other grass species. Through stringent phylogenomic analyses, we discovered 57 additional LGTs in the A. semialata nuclear genome, involving at least nine different donor species. The LGTs are clustered in 23 laterally acquired genomic fragments that are up to 170 kb long and have accumulated during the diversification of Alloteropsis. The majority of the 59 LGTs in A. semialata are expressed, and we show that they have added functions to the recipient genome. Functional LGTs were further detected in the genomes of five other grass species, demonstrating that this process is likely widespread in this globally important group of plants. LGT therefore appears to represent a potent evolutionary force capable of spreading functional genes among distantly related grass species.


Assuntos
DNA de Plantas/genética , Transferência Genética Horizontal , Genes de Plantas , Poaceae/genética , Cromossomos de Plantas , Filogenia , Poaceae/classificação
6.
Mol Ecol ; 28(6): 1550-1562, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30633406

RESUMO

Recombination and selection drive the extent of linkage disequilibrium (LD) among loci and therefore affect the reshuffling of adaptive genetic variation. However, it is poorly known to what extent the enrichment of transposable elements (TEs) in recombinationally-inert regions reflects their inefficient removal by purifying selection and whether the presence of polymorphic TEs can modify the local recombination rate. In this study, we investigate how TEs and recombination interact at fine scale along chromosomes and possibly support linked selection in natural populations. Whole-genome sequencing data of 304 individuals from nearby alpine populations of Arabis alpina were used to show that the density of polymorphic TEs is specifically correlated with local LD along chromosomes. Consistent with TEs modifying recombination, the characterization of 28 such LD blocks of up to 5.5 Mb in length revealed strong evidence of selective sweeps at a few loci through either site frequency spectrum or haplotype structure. A majority of these blocks were enriched in genes related to ecologically relevant functions such as responses to cold, salt stress or photoperiodism. In particular, the S-locus (i.e., supergene responsible for strict outcrossing) was identified in a LD block with high levels of polymorphic TEs and evidence of selection. Another such LD block was enriched in cold-responding genes and presented evidence of adaptive loci related to photoperiodism and flowering being increasingly linked by polymorphic TEs. These results are consistent with the hypothesis that TEs modify recombination landscapes and thus interact with selection in driving blocks of linked adaptive loci in natural populations.


Assuntos
Elementos de DNA Transponíveis/genética , Desequilíbrio de Ligação/genética , Recombinação Genética , Seleção Genética/genética , Cromossomos/genética , Haplótipos/genética , Humanos , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único/genética
7.
Mol Ecol ; 26(18): 4587-4590, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28949090

RESUMO

Studying hybridization has the potential to elucidate challenging questions in evolutionary biology such as the nature of adaptive genetic variation and reproductive isolation. A growing body of work highlights that the merging of divergent genomes goes beyond the reshuffling of standing variation from related species and promotes mutations (Abbott et al., ). However, to what extent such genome instability generates evolutionary significant variation remains largely elusive. In this issue of Molecular Ecology, Dennenmoser et al. () report considerable dynamics of transposable elements (TEs) in a recent invasive fish species of hybrid origin (Cottus; Figure ). It adds to the recent examples from plants to support TE-specific genome variation following hybridization. Insights from early, as well as established, hybrids are largely coherent with increased TE activity, and this fish system thus represents an inspiring opportunity to further address the possible association between genome dynamics and "rapid evolution of hybrid species." This work based on genome (re)sequencing contrasts with prior transcriptomics or PCR-based studies of TEs and illustrates how unprecedented amount of information promises a better understanding of the multiple patterns of variation across eukaryotic genomes; provided that we get the better of methodological advances. As discussed here, unbiased assessment of TE variation from genome surveys indeed remains a challenge precluding firm conclusions to be reached about the evolutionary significance of TEs. Despite methodological and conceptual developments that appear necessary to unambiguously uncover the unexplored iceberg below the known tip, the role of coding genes vs. TEs in promoting adaptation and speciation might be clarified in a not so remote future.


Assuntos
Variações do Número de Cópias de DNA , Elementos de DNA Transponíveis , Animais , Evolução Molecular , Genômica , Plantas/genética
8.
Plant J ; 90(5): 979-993, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28244250

RESUMO

Transposable elements support genome diversification, but comparison of their proliferation and genomic distribution within and among species is necessary to characterize their role in evolution. Such inferences are challenging because of potential bias with incomplete sampling of repetitive genome regions. Here, using the assembled genome as well as genome skimming datasets in Arabis alpina, we assessed the limits of current approaches inferring the biology of transposable elements. Long terminal repeat retrotransposons (LTR-RTs) identified in the assembled genome were classified into monophyletic lineages (here called tribes), including families of similar copies in Arabis along with elements from related Brassicaceae. Inference of their dynamics using divergence of LTRs in full-length copies and mismatch distribution of genetic variation among all copies congruently highlighted recent transposition bursts, although ancient proliferation events were apparent only with mismatch distribution. Similar inferences of LTR-RT dynamics based on random sequences from genome skimming were highly correlated with assembly-based estimates, supporting accurate analyses from shallow sequencing. Proportions of LTR-RT copies next to genes from both assembled genomes and genome skimming were congruent, pointing to tribes being over- or under-represented in the vicinity of genes. Finally, genome skimming at low coverage revealed accurate inferences of LTR-RT dynamics and distribution, although only the most abundant families appeared robustly analysed at 0.1X. Examining the pitfalls and benefits of approaches relying on different genomic resources, we highlight that random sequencing reads represent adequate data suitably complementing biased samples of LTR-RT copies retrieved from assembled genomes towards comprehensive surveys of the biology of transposable elements.


Assuntos
Genoma de Planta/genética , Retroelementos/genética , Sequências Repetidas Terminais/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Variação Genética/genética , Genômica , Filogenia , Proteínas de Plantas/genética
9.
Appl Biochem Biotechnol ; 172(1): 533-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24101561

RESUMO

The potentiality of Pongamia pinnata L. as a sustainable source of feedstock for the biodiesel industry is dependent on an extensive knowledge of the genome structure of the plant. Flow cytometry, with propidium iodide (PI) as the DNA stain, was used to estimate the nuclear DNA content of P. pinnata, with respect to Zea mays 'CE-777' as standard. The internal and pseudo-internal standardization was followed on account of the inhibitory effect of secondary compounds on PI intercalation. The antioxidants (PVP-40 and ß-mercaptoethanol) were added to the nuclear isolation buffer for the reduction of inhibitory effect of P. pinnata cytosol. Nuclear DNA content estimation was done for P. pinnata leaves from different altitudes (37-117 m height from sea level) of Assam. Flow cytometry analysis indicated that the nuclear DNA content of P. pinnata is 2.66 pg with predicted 1C value of 1,300 Mb using Z. mays as standard. Coefficient of variation in flow cytometric analysis was within the limit of 5 % indicating that the results were reliable. Somatic chromosome numbers were counted from root-tip cells and was found to be 2n = 22 corresponding to the diploid level (x = 11). A decreasing trend in the nuclear DNA content was observed for the species of different altitudes.


Assuntos
Biocombustíveis , Núcleo Celular/genética , Cromossomos de Plantas/genética , DNA de Plantas/metabolismo , Citometria de Fluxo/métodos , Pongamia/citologia , Pongamia/genética , Antioxidantes/farmacologia , Núcleo Celular/efeitos dos fármacos , Cromossomos de Plantas/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Citometria de Fluxo/normas , Pongamia/metabolismo , Padrões de Referência
10.
Protoplasma ; 251(3): 703-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23990110

RESUMO

Pongamia pinnata L. is a multipurpose versatile legume that is well known as a prospective feedstock biodiesel species. However, to date, there has been little genomic research aimed at the exploitation of the biotechnological potential of this species. Genetic characterization of any plant is a challenging task when there is no information about the genome size and organization of the species. Therefore, the genome size of P. pinnata was estimated by flow cytometry with respect to two standards (Zea mays and Pisum sativum), and compared with that of in vitro-raised plants (nodal segment, in vitro-rooted plantlets and acclimatized in vitro plants) to study the potential effect of somaclonal variation on genome size. This method can be used to support the establishment of true-to-type plants to encourage afforestation programs. Modified propidium iodide/hypotonic citrate buffer was used for isolation of the intact nuclei. The 2C DNA value of this species was estimated to be 2.51 ± 0.01 pg. Statistically, there was no significant difference in the DNA content of the in vitro-grown plants and mother plant at α = 0.05. As a result of the low genome size of P. pinnata, a species that has adapted itself to a wide range of edaphic and ecological condition, we can now proceed for its next generation sequencing and genomic diversity studies.


Assuntos
Núcleo Celular/genética , DNA de Plantas/genética , Fabaceae/genética , Citometria de Fluxo/métodos , Genoma de Planta , Técnicas In Vitro , Plantas Medicinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...