Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogenesis ; 12(1): 53, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949862

RESUMO

There is a critical need to identify new therapeutic vulnerabilities in pancreatic ductal adenocarcinoma (PDAC). Transcriptional co-regulators C-terminal binding proteins (CtBP) 1 and 2 are highly overexpressed in human PDAC, and CRISPR-based homozygous deletion of Ctbp2 in a mouse PDAC cell line (CKP) dramatically decreased tumor growth, reduced metastasis, and prolonged survival in orthotopic mouse allografts. Transcriptomic profiling of tumors derived from CKP vs. Ctbp2-deleted CKP cells (CKP/KO) revealed significant downregulation of the EGFR-superfamily receptor Erbb3, the heterodimeric signaling partner for both EGFR and ErbB2. Compared with CKP cells, CKP/KO cells also demonstrated reduced Erbb2 expression and did not activate downstream Akt signaling after stimulation of Erbb3 by its ligand neuregulin-1. ErbB3 expression in human PDAC cell lines was similarly dependent on CtBP2 and depletion of ErbB3 in a human PDAC cell line severely attenuated growth, demonstrating the critical role of ErbB3 signaling in maintaining PDAC cell growth. Sensitivity to the ErbB2-targeted tyrosine kinase inhibitor lapatinib, but not the EGFR-targeted agent erlotinib, varied in proportion to the level of ErbB3 expression in mouse and human PDAC cells, suggesting that an ErBb2 inhibitor can effectively leverage CtBP2-driven transcriptional activation of physiologic ErbB2/3 expression and signaling in PDAC cells for therapeutic benefit.

2.
Cancer Res Commun ; 3(10): 2003-2013, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37707363

RESUMO

Cancer therapies targeting metabolic derangements unique to cancer cells are emerging as a key strategy to address refractory solid tumors such as pancreatic ductal adenocarcinomas (PDAC) that exhibit resistance to extreme nutrient deprivation in the tumor microenvironment. Nicotinamide adenine dinucleotide (NAD) participates in multiple metabolic pathways and nicotinamide phosphoribosyl transferase (NAMPT) is one of the key intracellular enzymes that facilitate the synthesis of NAD. C-terminal binding proteins 1 and 2 (CtBP) are paralogous NAD-dependent oncogenic transcription factors and dehydrogenases that nucleate an epigenetic complex regulating a cohort of genes responsible for cancer proliferation and metastasis. As adequate intracellular NAD is required for CtBP to oligomerize and execute its oncogenic transcriptional coregulatory activities, we hypothesized that NAD depletion would synergize with CtBP inhibition, improving cell inhibitory efficacy. Indeed, depletion of cellular NAD via the NAMPT inhibitor GMX1778 enhanced growth inhibition induced by either RNAi-mediated CtBP1/2 knockdown or the CtBP dehydrogenase inhibitor 4-chlorophenyl-2-hydroxyimino propanoic acid as much as 10-fold in PDAC cells, while untransformed pancreatic ductal cells were unaffected. The growth inhibitory effects of the NAMPT/CtBP inhibitor combination correlated pharmacodynamically with on-target disruption of CtBP1/2 dimerization, CtBP2 interaction with the CoREST epigenetic regulator, and transcriptional activation of the oncogenic target gene TIAM1. Moreover, this same therapeutic combination strongly attenuated growth of PDAC cell line xenografts in immunodeficient mice, with no observable toxicity. Collectively, our data demonstrate that targeting CtBP in combination with NAD depletion represents a promising therapeutic strategy for PDAC. SIGNIFICANCE: Effective precision therapies are lacking in PDAC. We demonstrate that simultaneous inhibition of NAD metabolism and the oncoprotein CtBP is potently effective at blocking growth of both PDAC cells in culture and human PDAC-derived tumors in mice and should be explored further as a potential therapy for patients with PDAC.


Assuntos
Neoplasias Pancreáticas , Fatores de Transcrição , Humanos , Animais , Camundongos , Fatores de Transcrição/metabolismo , NAD/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
3.
MethodsX ; 7: 101163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33665149

RESUMO

Extraction of high-quality RNA from pancreatic tumors for sequencing purposes is technically challenging, as the pancreas is an organ rich in ribonucleases. The majority of the established RNA isolation protocols for use with primary pancreatic tissue involve perfusion of RNA stabilizing reagent into the pancreatic tissue to protect RNA integrity before extraction. However, the additional time needed for this procedure can actually lead to further RNA degradation. We optimized a protocol suitable for high quality RNA isolation from mouse pancreatic tumors that is a simple, fast, and inexpensive modification of existing methods, combining the use of liquid nitrogen and guanidinium thiocyanate-chloroform extraction. Through this procedure, the mean RNA Integrity Number value obtained for RNA isolated from pancreatic tumors was 9.0, and was reproducibly suitable for RNAseq and qPCR.•a protocol suitable for high quality RNA isolation from mouse pancreatic tumors as well as normal pancreas•combining the use of liquid nitrogen and guanidinium thiocyanate-chloroform extraction.

4.
Oncogenesis ; 8(10): 55, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586042

RESUMO

Ctbp2 is a uniquely targetable oncogenic transcriptional coregulator, exhibiting overexpression in most common solid tumors, and critical to the tumor-initiating cell (TIC) transcriptional program. In the "CKP" mouse pancreatic ductal adenocarcinoma (PDAC) model driven by mutant K-Ras, Ctbp2 haploinsufficiency prolonged survival, abrogated peritoneal metastasis, and caused dramatic downregulation of c-Myc, a known critical dependency for TIC activity and tumor progression in PDAC. A small-molecule inhibitor of CtBP2, 4-chloro-hydroxyimino phenylpyruvate (4-Cl-HIPP) phenocopied Ctbp2 deletion, decreasing tumor burden similarly to gemcitabine, and the combination of 4-Cl-HIPP and gemcitabine further synergistically suppressed tumor growth. Pharmacodynamic monitoring revealed that the 4-Cl-HIPP/gemcitabine combination induced robust and synergistic tumor apoptosis and marked downregulation of the TIC marker CD133 in CKP PDAC tumors. Collectively, our data demonstrate that targeting CtBP represents a fruitful avenue for development of highly active agents in PDAC that cooperate with standard therapy to limit both primary and metastatic tumor burden.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...