Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS J ; 26(4): 66, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862853

RESUMO

Tyrosine kinase inhibitors (TKIs) have demonstrated significant efficacy against various types of cancers through molecular targeting mechanisms. Over the past 22 years, more than 100 TKIs have been approved for the treatment of various types of cancer indicating the significant progress achieved in this research area. Despite having significant efficacy and ability to target multiple pathways, TKIs administration is associated with challenges. There are reported inconsistencies between observed food effect and labeling administration, challenges of concomitant administration with acid-reducing agents (ARA), pill burden and dosing frequency. In this context, the objective of present review is to visit administration challenges of TKIs and effective ways to tackle them. We have gathered data of 94 TKIs approved in between 2000 and 2022 with respect to food effect, ARA impact, administration schemes (food and PPI restrictions), number of pills per day and administration frequency. Further, trend analysis has been performed to identify inconsistencies in the labeling with respect to observed food effect, molecules exhibiting ARA impact, in order to identify solutions to remove these restrictions through novel formulation approaches. Additionally, opportunities to reduce number of pills per day and dosing frequency for better patient compliance were suggested using innovative formulation interventions. Finally, utility of physiologically based pharmacokinetic modeling (PBPK) for rationale formulation development was discussed with literature reported examples. Overall, this review can act as a ready-to-use-guide for the formulation, biopharmaceutics scientists and medical oncologists to identify opportunities for innovation for TKIs.


Assuntos
Interações Alimento-Droga , Neoplasias , Inibidores de Proteínas Quinases , Humanos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Neoplasias/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Proteínas Tirosina Quinases/antagonistas & inibidores , Esquema de Medicação
2.
AAPS PharmSciTech ; 25(5): 118, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806735

RESUMO

The use of in vitro-in vivo correlation (IVIVC) for extended release oral dosage forms is an important technique that can avoid potential clinical studies. IVIVC has been a topic of discussion over the past two decades since the inception of USFDA guidance. It has been routinely used for biowaivers, establishment of dissolution safe space and clinically relevant dissolution specifications, for supporting site transfers, scale-up and post approval changes. Although conventional or mathematical IVIVC is routinely used, other approach such as mechanistic IVIVC can be of attractive choice as it integrates all the physiological aspects. In the present study, we have performed comparative evaluation of mechanistic and conventional IVIVC for establishment of dissolution safe space using divalproex sodium and tofacitinib extended release formulations as case examples. Conventional IVIVC was established using Phoenix and mechanistic IVIVC was set up using Gastroplus physiologically based biopharmaceutics model (PBBM). Virtual dissolution profiles with varying release rates were constructed around target dissolution profile using Weibull function. After internal and external validation, the virtual dissolution profiles were integrated into mechanistic and conventional IVIVC and safe space was established by absolute error and T/R ratio's methods. The results suggest that mechanistic IVIVC yielded wider safe space as compared to conventional IVIVC. The results suggest that a mechanistic approach of establishing IVIVC may be a flexible approach as it integrates physiological aspects. These findings suggest that mechanistic IVIVC has wider potential as compared to conventional IVIVC to gain wider dissolution safe space and thus can avoid potential clinical studies.


Assuntos
Química Farmacêutica , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Solubilidade , Química Farmacêutica/métodos , Administração Oral , Piperidinas/química , Piperidinas/administração & dosagem , Pirimidinas/química , Pirimidinas/administração & dosagem , Pirrolidinas/química , Biofarmácia/métodos
3.
Drug Deliv Transl Res ; 13(10): 2503-2519, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37024611

RESUMO

"Brick dust" compounds have high lattice energy as manifested by the poor aqueous solubility and suboptimal bioavailability. Nilotinib being a weakly basic brick dust molecule exhibits erratic and limited absorption during gastrointestinal transit, attributed to pre-absorptive factors like pH-dependent solubility, poor dissolution kinetics, and post-absorptive factors including P-gp-mediated drug efflux. In our study, these problems are addressed holistically by the successful fabrication of amorphous nanosuspension by an acid-base neutralization approach. The nanosuspension was obtained via rapid precipitation of nilotinib in an amorphous form and the generated in situ sodium chloride salt assisted in stabilizing the drug-loaded nanosuspension in a cage of salt and micellar stabilizer. Soluplus® and hypromellose acetate succinate (HPMCAS) were employed as a novel combination of stabilizers. Systematic optimization was carried out by employing the I-optimal method using Design Expert® software with a concentration of HPMCAS and Soluplus® as independent variables and evaluating them for responses viz particle size, polydispersity index (PDI), and zeta potential. The resultant nanosuspension showed a mean particle size of 130.5 ± 1.22 nm with a PDI value of 0.27 ± 0.01, and a zeta potential of - 5.21 ± 0.91 mV. The nanosuspension was further characterized for morphology, dissolution, and in vivo pharmacokinetics study. X-ray powder diffraction study of the nano-formulation displayed a halo pattern revealing the amorphous form. Stability studies showed that the nanosuspension remained stable at 40 °C ± 2 °C and 75% RH ± 5% RH for a period of three months. In vitro drug release and solubility study showed threefold and 36-fold enhancement in dissolution and solubility of the nanosuspension. Furthermore, an in vivo pharmacokinetic study in Sprague-Dawley rats following oral administration displayed a 1.46-fold enhancement in the relative bioavailability of the nanosuspension in contrast to neat nilotinib.


Assuntos
Produtos Biológicos , Nanopartículas , Ratos , Animais , Ratos Sprague-Dawley , Solubilidade , Disponibilidade Biológica , Tamanho da Partícula , Suspensões , Administração Oral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...