Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plants (Basel) ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732423

RESUMO

In regions facing water scarcity and soil salinity, mitigating these abiotic stresses is paramount for sustaining crop production. This study aimed to unravel the synergistic effects of organic matter and phosphorus management in reducing the adverse effect of saline water for irrigation on red pepper (Capsicum annuum L.) production, fruit quality, plant physiology, and stress tolerance indicators. The study was carried out in the arid Tadla region of Morocco and involved two key experiments: (i) a field experiment during the 2019 growing season, where red pepper plants were subjected to varying phosphorus fertilizer rates (120, 140, and 170 kg of P2O5.ha-1) and saline water irrigation levels (0.7; 1.5; 3; and 5 dS.m-1); and (ii) a controlled pot experiment in 2021 for examining the interaction of saline water irrigation levels (EC values of 0.7, 2, 5, and 9 dS.m-1), phosphorus rates (30, 36, and 42 kg of P2O5.ha-1), and the amount of organic matter (4, 8, 12, and 16 t.ha-1). The field study highlighted that saline irrigation significantly affected red pepper yields and fruit size, although phosphorus fertilization helped enhance productivity. Additionally, biochemical markers of stress tolerance, such as proline and glycine betaine, along with stomatal conductance, were impacted by increasing salinity levels. The pot experiment showed that combining organic amendments and phosphorus improved soil properties and stimulated red pepper growth and root weight across all salinity levels. The integration of phosphorus fertilization and organic amendments proved instrumental for counteracting salinity-induced constraints on red pepper growth and yield. Nonetheless, caution is necessary as high salinity can still negatively impact red pepper productivity, necessitating the establishment of an irrigation water salinity threshold, set at 5 dS.m-1.

2.
Front Plant Sci ; 14: 1146658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441174

RESUMO

In the context of climate change, quinoa represents a potential alternative crop for increasing crops diversity, agricultural productivity, and farmer's income in semi-arid regions. However, appropriate crop management practices under limited water supply are still poorly documented. Quinoa, like other cultivated crops, needs optimum quantities of nutrients, especially nitrogen (N), phosphorus (P), and potassium (K), for better growth and high grain yield. To determine the adequate levels of nutrient requirements and their effect on quinoa growth and productivity, a field experiment was conducted during two growing seasons (2020-2021 and 2021-2022). The experiment was conducted in Ben Guerir region, north-central Morocco, and consisted of a randomized complete block design (RCBD) with three replications. The treatments studied consist of a combination of four N rates (0, 40, 80, and 120 kg ha-1), three P rates (0, 30, and 60 kg P2O5 ha-1), and three K rates (0, 60, and 120 kg K2O ha-1). The physiological, nutritional, and production parameters of quinoa were collected and analyzed. The results showed that the highest total biomass (3.9 t ha-1) and grain yield (0.8 t ha-1) under semi-arid conditions were obtained with 40 kg N ha-1, 60 kg P2O5 ha-1, and 120 kg K2O ha-1. The application of 40-60-120 kg ha-1 of N-P2O5-K2O increased plant height by 44%, chlorophyll content index by 96%, total biomass by 134%, grain yield by 112%, and seed weight by 118%. Among the three macronutrients, N was the most limiting factor, followed by K and P. Nutrients uptake data showed that quinoa needs 60 kg N, 26 kg P2O5, and 205 kg K2O to produce 1 t of grain yield. Our field results provide future recommendations for improving the agronomic and environmental sustainability of quinoa cultivation in dryland areas in Morocco.

3.
Plants (Basel) ; 11(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35050104

RESUMO

Soil salinity is a major problem in arid and semi-arid regions, causing land degradation, desertification, and subsequently, food insecurity. Salt-affected soils and phosphorus (P) deficiency are the common problems in the sub-Sahara, including the Southern region of Morocco. Soil salinity limits plant growth by limiting water availability, causing a nutritional imbalance, and imparting osmotic stress in the plants. The objective of this study was to determine the positive effects of P on growth and productivity and understand the major leaf mineral nutrient content of quinoa (Chenopodium quinoa Willd.) cv. "ICBA Q5" irrigated with saline water. A field experiment applying three salinity (Electrical Conductivity, EC) levels of irrigation water (ECw = 5, 12, and 17 dS·m-1) and three P fertilizer rates (0, 60, and 70 kg of P2O5 ha-1) were evaluated in a split-plot design with three replications. The experiment was conducted in Foum El Oued, South of Morocco on sandy loam soil during the period of March-July 2020. The results showed that irrigation with saline water significantly reduced the final dry biomass, seed yield, harvest index, and crop water productivity of quinoa; however, P application under saline conditions minimized the effect of salinity and improved the yield. The application of 60 and 70 kg of P2O5 ha-1 increased (p < 0.05) the seed yield by 29 and 51% at low salinity (5 dS·m-1), by 16 and 2% at medium salinity (12 dS·m-1), and by 13 and 8% at high salinity (17 dS·m-1), respectively. The leaf Na+ and K+ content and Na+/K+ ratio increased with irrigation water salinity. However, the leaf content of Mg, Ca, Zn, and Fe decreased under high salinity. It was also found that increasing P fertilization improved the essential nutrient content and nutrient uptake. Our finding suggests that P application minimizes the adverse effects of high soil salinity and can be adopted as a coping strategy under saline conditions.

4.
Plants (Basel) ; 10(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34961079

RESUMO

Salinity is a major problem affecting crop production in many regions in the world including Morocco. Agricultural practices such as fertilization could be useful to overcome this problem and improve crop productivity. The objective of our study was to evaluate the combined effect of phosphorus fertilization and irrigation water salinity on growth, yield, and stomatal conductance of forage corn (Zea mays L.) cv. "Sy sincerro". Field experiments were carried out for two years testing four levels of irrigation water salinity (ECw = 0.7; 2, 4, and 6 dS·m-1) and three rates of phosphorus (105, 126, and 150 kg P2O5·ha-1) fertilization conducted in a split-plot design with three replications. The obtained results show that irrigation water salinity had a negative effect on all monitored parameters. For instance, the dry matter yield reduced by an average of 19.3 and 25.1% compared to the control under saline irrigation with an EC value equal to 4 and 6 dS·m-1, respectively. The finding also showed that phosphorus applications tend to increase root weight, root length, stem length, leaf stomatal conductance, grain yield and dry matter yield under salinity conditions. For example, the addition of phosphorus with a rate of 126 and 150 kg P2O5·ha-1 respectively improved dry matter yield by an average of 4 and 9% under low salinity level (ECw = 2 dS·m-1), by 4 and 15% under medium salinity (4 dS·m-1), and by 6 and 8% under a high salinity level (6 dS·m-1). Our finding suggests that supplementary P application could be one of the best practices to reduce the adverse effects of high salinity on growth and development of forage corn.

5.
Plants (Basel) ; 10(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204858

RESUMO

Agriculture is facing many challenges, such as climate change, drought, and salinity, which call for urgent interventions for fast adaptation and crop diversification. The introduction of high-value and stress tolerant crops such as quinoa would be a judicious solution to overcome constraints related to abiotic stress and to increase land productivity and farmers' incomes. The implementation of quinoa in Morocco has not been supported by a full valorization program to control the quality of quinoa seeds. The novelty of this work is to assess the pearling operation as an efficient method of saponins removal as well as the determination of total residual saponins. This study aimed to evaluate the effects of several pearling durations on nutrient and saponin content of quinoa seeds of three tested varieties (Puno, Titicaca, and ICBA-Q5). Five pearling durations were tested (0, 2, 4, 6, 7, and 8 min) using a locally manufactured pearling machine. The results indicated that a pearling duration of two minutes was enough to reduce total saponin content from 0.49% to 0.09% for Puno variety, from 0.37% to 0.07% for Titicaca variety, and from 0.57% to 0.1% for ICBA-Q5 variety. Our results showed that pearling slightly reduced protein, total fat, and moisture contents for all varieties except for Puno, where total fat content slightly increased with the pearling. Puno variety had the highest seed content in terms of protein and total fat; the ICBA-Q5 variety had the lowest. Titicaca had the highest bran content in terms of protein and total fat, ICBA-Q5 had the highest bran content in terms of ash and the lowest bran content in terms of protein and total fat, and Puno had the lowest bran content in terms of ash. Pearling had no significant effect on macronutrient contents in the processed seed, but it resulted in a very highly significant difference for most of them in the bran except for Mg and S. Regarding seed content in terms of micro-nutrients, statistical analysis showed significant differences between varieties in terms of Zn, Cu, and Mn contents, but no significant difference was recorded for Fe or B. Pearling had no significant effect on seed micronutrient contents. Therefore, to retain maximum nutritional content in the quinoa and maintain quinoa integrity, it is necessary to limit the pearling duration of quinoa to two minutes, which is enough to reduce saponin content below the Codex Standard threshold (0.12%).

6.
Environ Sci Pollut Res Int ; 28(34): 46781-46796, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33634400

RESUMO

Agriculture is facing many challenges as climate change, drought, and salinity which call for urgent interventions to fast adaptation and diversification such as the introduction of new climate smart and stress tolerant crops such as quinoa. This study aims to introduce new high yielding quinoa cultivars conducted under several agronomic practices (rainfed, irrigation, and organic amendment) and to assess the technical and economic aspects related to quinoa seed production, transformation, and quality. Results obtained from agronomic trials clearly showed that International Center for Biosaline Agriculture cultivars recorded higher yields than locally cultivated seeds. Irrigation and organic amendment had a tremendous effect on quinoa productivity as it increased most of cultivar's yield by more than three times compared with rainfed conditions. Production cost analysis showed that using mechanized production and processing practices combined with irrigation and organic amendment can reduce seed production and processing cost from 2.8 to 1.2 USD kg-1 compared with manual production system under rainfed conditions. The diagnosis of the quinoa transformation pathways revealed different transformation levels, and the production cost increased with the level of transformation due to high cost of labor and raw material. Analysis of quinoa seeds showed that macronutrient content is mostly not affected by pearling process, while micronutrients content was significantly decreased in processed seeds. In addition, total saponin content was reduced to an acceptable level after using mechanical pearling compared with manual abrasion.


Assuntos
Chenopodium quinoa , Secas , Marrocos , Salinidade , Sementes
7.
Plants (Basel) ; 10(2)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562429

RESUMO

Agricultural production in the Rehamna region, Morocco is limited with various challenges including drought and salinity. Introduction of climate resilient and rustic crops such as quinoa was an optimal solution to increase farmer's income and improve food security. This study summarizes results obtained from a research project aiming to develop quinoa value chain in Morocco. The study tackled several aspects including agronomic traits (yield and growth), transformation, quality (nutritional and antinutritional traits) and economic analysis and, finally, a strength-weaknesses-opportunities-threats analysis, lessons learned and development perspectives were presented. From an agronomic point of view, introduced new quinoa cultivars showed higher performance than locally cultivated seeds and, furthermore, the use of irrigation and organic amendment has tremendously improved seed yield by double and three times, respectively, compared to rainfed conditions. Nutritional analysis revealed that protein and phosphorus content remained stable after seed pearling while most of the micronutrients content decreased after seed pearling. However, saponins content was reduced by 68% using mechanical pearling compared to 57% using both traditional abrasion and washing. The economic analysis showed that production cost of quinoa seeds could be further decreased using mechanized intensive tools along with irrigation and organic amendment supply. This study revealed several lessons learned from the field experience and proposed several development actions for each value chain component that can be implemented within a national quinoa program.

8.
Water Sci Technol ; 83(2): 309-321, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33504696

RESUMO

In Agadir, a water-scarce Moroccan region, municipal and industrial wastewater is tertiary-treated to be reused in golf courses. Wastewater reuse has been constrained by severe clogging of emitters, which caused technical and financial problems. This study aimed to perform an in-depth characterization of the treated wastewater (TWW) in relation to its susceptibility to cause clogging, and to assess the capacity of an aeration post-treatment to reduce the clogging potential. The post-treatment consisted of injecting different airflows (0-33 L/(h Lreactor) into the TWW. The structural, morphological and elemental composition of the clogging matter collected in the irrigation pipeline was characterized using scanning electron microscopy, scanning transmission electron microscopy, X-ray diffraction and X-ray energy dispersive spectroscopy. The 15-day aeration post-treatment at 16.5 L/(h Lreactor) presented the best cost-benefit ratio. Organic matter was totally degraded. Calcium was reduced by 9%, bicarbonates by 54%. The analysis of the deposits induced by the aeration post-treatment revealed a relevant decrease of the major constituents of the clogging deposits found in the irrigation pipeline. The results show the effectiveness of post-aeration in biodegrading residual organic matter and precipitating several salts, thus reducing the clogging potential.


Assuntos
Irrigação Agrícola , Águas Residuárias
9.
Environ Sci Pollut Res Int ; 28(34): 46692-46703, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33141382

RESUMO

Agriculture faces many challenges such as climate change, droughts, and salinity, which requires urgent interventions for fast adaptation and diversification of the sector. In this context, introduction of new crops that tolerate stresses and generate high added value such as quinoa would allow simultaneously to address two interlinked challenges: abiotic stresses that limit agricultural production and poverty that impacts negatively the rural people. The quinoa Rehamna project funded by the International Development Research Centre aims to contribute to the development the quinoa value chain toward achieving food and nutritional security of rural poor communities. The obtained results from the farmer's survey show that 14% of surveyed farmers already grow quinoa and 2/3 never heard about quinoa, among them 96% are interested to grow quinoa. The marketing study reveals that the psychological price that satisfies most of consumers is ranging between 2 and 2.6 USD/500 g of processed quinoa seeds. The findings indicate that quinoa has a great potential for both producers and consumers in Morocco and can be a judicious solution toward achieving food and nutritional security.


Assuntos
Chenopodium quinoa , Adaptação Fisiológica , Agricultura , Fazendeiros , Humanos , Marrocos
10.
Integr Environ Assess Manag ; 16(6): 910-919, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32618089

RESUMO

The use of treated wastewater (TWW) as an alternative resource to fresh water (FW) for irrigation purposes is becoming increasingly important, especially in semiarid and arid regions. However, achieving success in crop production largely depends on the adoption of appropriate on-farm management strategies aimed at optimizing crop yields, maintaining soil productivity and safeguarding the environment. For this purpose, predictive models are of particular interest. A safe irrigation management (SIM) model developed and tested in this research was used to schedule irrigation under controlled management tailored to the use of 1) TWW and 2) FW and to reproduce farmers' strategies. These management strategies aim to improve actual irrigation practices, accounting for water quality, soil characteristics, and crop yield. The results of the application of SIM on a citrus farm in Souss-Massa, Morocco, show that the management strategy adopted by farmers withdraws considerable amounts of water and results in substantial drainage volumes compared to those in the SIM strategy. In the specific case of TWW, the strategy simulated by the SIM model resulted in a decrease in yield of approximately 4%, compared to the 23% decrease derived from the farmers' traditional strategy. Moreover, SIM allowed for great savings in terms of fertilizing elements and for the reduction in the movement of water and salts beyond the root zone, usually considered the main source of groundwater contamination. These results confirm the appropriateness of using prediction models and the accuracy of the SIM model in adapting irrigation strategies to TWW, which will be an integral part of the strategies that encourage their use in irrigated agriculture. Integr Environ Assess Manag 2020;16:910-919. © 2020 SETAC.


Assuntos
Irrigação Agrícola , Águas Residuárias , Agricultura , Marrocos , Solo , Águas Residuárias/análise
11.
Integr Environ Assess Manag ; 16(6): 885-897, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32589785

RESUMO

While the Middle East and North African (MENA) region is facing challenges to sustain water security, water reclamation has received increasing consideration as a favorable mitigating solution. Despite the availability of adequate technologies, economic, political, legal, social, and environmental constraints often hamper stakeholders, and especially decision makers, from exploiting the existing potential into solution implementation. In the present paper, a comprehensive assessment for water reclamation and reuse was developed. This assessment consisted of 4 objectives: 1) apply a decision-support tool (DST) for water reclamation potential for municipal wastewater, 2) apply a DST for simulating and estimating the lifecycle costs of project-related technologies for water reclamation (municipal and industrial wastewater, as well as drainage canal water), 3) assess the national-level conditions for water reuse with a multicriteria decision analysis (MCA), and 4) establish exemplary strategies, barriers, and measures for water reuse. The present MCA considered 6 thematic subjects: policy and institution, economy, society, water management, legislation, and environment. The assessment was applied to food and nonfood crop irrigation in Egyptian, Moroccan, and Tunisian case studies. For all defined case studies, adapted treatment trains that could treat wastewater to the desired quality at reasonable costs were identified and are presented in the present paper. Results showed that technological options are available for water reuse, but the concept is not widely implemented in Egypt, Morocco, and Tunisia. The present paper identifies key barriers and drivers for the implementation of water reclamation for irrigation. In particular, the considered countries showed different characteristics regarding efficient water management, water pricing, subsidies and wastewater tariffs, implementation of monitoring and reporting systems, or legal aspects regarding the use of reclaimed water for food crop irrigation. Further exploration of case studies on high potential water reuse and financially affordable wastewater reclamation, particularly case studies that explore the impacts of policies and practices across countries, would be useful for helping the MENA region improve their water security situation. Integr Environ Assess Manag 2020;16:885-897. © 2020 SETAC.


Assuntos
Purificação da Água , Conservação dos Recursos Naturais , Egito , Humanos , Marrocos , Distribuição Aleatória , Tunísia , Eliminação de Resíduos Líquidos , Águas Residuárias , Água , Abastecimento de Água
12.
Integr Environ Assess Manag ; 14(4): 447-462, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29603595

RESUMO

Mediterranean-African countries (MACs) face a major water crisis. The annual renewable water resources are close to the 500 m3 /capita threshold of absolute water scarcity, and water withdrawals exceed total renewable water resources by 30%. Such a low water availability curbs economic development in agriculture, which accounts for 86% of freshwater consumption. The analysis of the current situation of wastewater treatment, irrigation, and water management in MACs and of the research projects targeted to these countries indicates the need for 1) an enhanced capacity to analyze water stress, 2) the development of water management strategies capable of including wastewater reuse, and 3) development of locally adapted water treatment and irrigation technologies. This analysis shaped the MADFORWATER project (www.madforwater.eu), whose goal is to develop a set of integrated technological and management solutions to enhance wastewater treatment, wastewater reuse for irrigation, and water efficiency in agriculture in Egypt, Morocco, and Tunisia. MADFORWATER develops and adapts technologies for the production of irrigation-quality water from drainage canals and municipal, agro-industrial, and industrial wastewaters and technologies for water efficiency and reuse in agriculture, initially validated at laboratory scale, to 3 hydrological basins in the selected MACs. Selected technologies will be further adapted and validated in 4 demonstration plants of integrated wastewater treatment and reuse. Integrated strategies for wastewater treatment and reuse targeted to the selected basins are developed, and guidelines for the development of integrated water management strategies in other basins of the 3 target MACs will be produced. The social and technical suitability of the developed technologies and nontechnological tools in relation to the local context is evaluated with the participation of MAC stakeholders and partners. Guidelines on economic instruments and policies for the effective implementation of the proposed water management solutions in the target MACs will be developed. Integr Environ Assess Manag 2018;14:447-462. © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Agricultura , Reciclagem , Eliminação de Resíduos Líquidos/métodos , Eliminação de Resíduos Líquidos/estatística & dados numéricos , Purificação da Água/métodos , Purificação da Água/estatística & dados numéricos , Egito , Marrocos , Tunísia
13.
Sci Total Environ ; 574: 760-770, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664763

RESUMO

The Plio-Quaternary aquifer of Chtouka is located in Southwestern of Morocco. The intensive agricultural activity in Chtouka basin requires the mobilization of 94% of fresh water resources for irrigation. This overexploitation, along with the succession of drought years, sea water intrusion and various sources of pollution, affected the quality and availability of groundwater resources. Several sampling campaigns were carried out in different sites of the study area in order to investigate the spatial variation of groundwater quality. The temporal evolution of groundwater level shows that the water table was subjected to a gradual decline during the last decade, indicating an intensive exploitation mainly in irrigated areas. In the Southern part around Belfaa and the irrigated area along Massa River, nitrate concentrations exceed 50mg/L, which is the threshold set by the World Health Organization, while in the northern part around Biougra and Ait Amira, the nitrate concentration is mostly below 50mg/L indicating a relative good groundwater quality. This finding can be explained by the improvement of agricultural practices, particularly the conversion of flood and sprinkler irrigation to drip irrigation (80% of the total irrigated area) in most of the developed farms in this part of the study area. Moreover, the exploitation of groundwater from the deep aquifer, due to the increasing water demand in the region, can also explain the low chemical concentrations since the deep aquifer is not affected by anthropogenic pollutants or marine intrusion. Stable isotopes (18O and 2H) highlight the different origins of groundwater, indicating the complexity of the aquifer system path flows, which is attributable to the intensive exploitation and irrigation water return.

14.
Braz. arch. biol. technol ; 60: e17160568, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951483

RESUMO

ABSTRACT The cactus is a succulent plant resistant to droughts. According to the recently reviewed classification, cacti belong to the family of Opuntiaceae Desv. (synon. Cactaceae Juss.) with Opuntia Mill. as the typical genus. This genus is economically the most important in the family, as it includes a group of cactus pear plants which play an important role in the agricultural systems of arid and semi-arid regions. Flowering of the cactus pear fruit is an important determinant of the fruit harvesting period. The goal of this paper is to present the physiology of the cactus pear and to explain in detail the biology of its flowering and fruiting processes. This study is also enriched by our observations on the flowering and fruiting of three varieties of cactus pear that we followed for two successive years in southern Morocco.

15.
Sci Total Environ ; 573: 862-875, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27599050

RESUMO

This study evaluates the effect on the availability of water resources for agriculture of expected future changes in precipitation and temperature distributions in north-western Africa. It also puts forward some locally derived adaptation strategies to climate change that can have a positive impact on water resources in the Chtouka Aït Baha region. Historical baselines of precipitation and temperature were derived using satellite data respectively from CHIRPS and CRU, while future projections of temperature and precipitation were extracted from the Coordinated Regional Climate Downscaling Experiment database (CORDEX). Projections were also generated for two future periods (2030-2049 and 2080-2099) under two Representative Concentration Pathways: RCP4.5 and RCP8.5. Regional climate models and satellite data outputs were evaluated by calculating their bias and RMSE against historical baseline and observed data. Under the RCP8.5 scenario, temperature in the region shows an increase by 2°C for the 2030-2049 time period, and by 4 to 5°C towards the end of the 21st century. According to the RCP4.5 scenario, precipitation shows a reduction of 10 to 30% for the period 2030-2049, up to 60% for 2080-2099. Outputs from the climate change projections were used to force the HEC-HMS hydrological model. Simulation results indicate that water deficit at basin level will likely triple towards 2050 due to increase in water demand and decrease in aquifer recharge and dam storage. This alarming situation, in a country that already suffers from water insecurity, emphasizes the need for more efforts to implement climate change adaptation measures. This paper presents an assessment of 38 climate change adaptation measures according to several criteria. The evaluation shows that measures affecting the management of water resources have the highest benefit-to-efforts ratio, which indicates that decision makers and stakeholders should increasingly focus their efforts on management measures.

16.
Front Plant Sci ; 7: 346, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27066019

RESUMO

Quinoa is recognized as a crop of great value in terms of tolerance to abiotic stresses and there is growing interest to introduce it in marginal agricultural production systems worldwide. Also, quinoa is one of the most nutritious food crops currently known and the nutritive properties of the crop are seen as a mean to fight malnutrition globally. Various quinoa cultivars have been screened for tolerance to salinity, water-use efficiency and nutritional quality and the positive attributes found in them have created even wider global interest in its cultivation. This paper summarizes 15 years of studies on assessing the potential for introducing the crop in a few countries of the Middle East and North Africa (MENA) and Central Asia regions and describes the key constraints for scaling-up the production under marginal growing conditions in the newly introduced countries.

17.
Sci Total Environ ; 503-504: 3-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25005236

RESUMO

Water scarcity is a serious environmental problem in many European regions, and will likely increase in the near future as a consequence of increased abstraction and climate change. Water scarcity exacerbates the effects of multiple stressors, and thus results in decreased water quality. It impacts river ecosystems, threatens the services they provide, and it will force managers and policy-makers to change their current practices. The EU-FP7 project GLOBAQUA aims at identifying the prevalence, interaction and linkages between stressors, and to assess their effects on the chemical and ecological status of freshwater ecosystems in order to improve water management practice and policies. GLOBAQUA assembles a multidisciplinary team of 21 European plus 2 non-European scientific institutions, as well as water authorities and river basin managers. The project includes experts in hydrology, chemistry, biology, geomorphology, modelling, socio-economics, governance science, knowledge brokerage, and policy advocacy. GLOBAQUA studies six river basins (Ebro, Adige, Sava, Evrotas, Anglian and Souss Massa) affected by water scarcity, and aims to answer the following questions: how does water scarcity interact with other existing stressors in the study river basins? How will these interactions change according to the different scenarios of future global change? Which will be the foreseeable consequences for river ecosystems? How will these in turn affect the services the ecosystems provide? How should management and policies be adapted to minimise the ecological, economic and societal consequences? These questions will be approached by combining data-mining, field- and laboratory-based research, and modelling. Here, we outline the general structure of the project and the activities to be conducted within the fourteen work-packages of GLOBAQUA.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Qualidade da Água/normas , Abastecimento de Água , Mudança Climática , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...