Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1035358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561447

RESUMO

Currently, the use of phosphate (P) biofertilizers among many bioformulations has attracted a large amount of interest for sustainable agriculture. By acting as growth promoters, members of the Streptomyces genus can positively interact with plants. Several studies have shown the great potential of this bacterial group in supplementing P in a soluble, plant-available form by several mechanisms. Furthermore, some P-solubilizing Streptomyces (PSS) species are known as plant growth-promoting rhizobacteria that are able to promote plant growth through other means, such as increasing the availability of soil nutrients and producing a wide range of antibiotics, phytohormones, bioactive compounds, and secondary metabolites other than antimicrobial compounds. Therefore, the use of PSS with multiple plant growth-promoting activities as an alternative strategy appears to limit the negative impacts of chemical fertilizers in agricultural practices on environmental and human health, and the potential effects of these PSS on enhancing plant fitness and crop yields have been explored. However, compared with studies on the use of other gram-positive bacteria, studies on the use of Streptomyces as P solubilizers are still lacking, and their results are unclear. Although PSS have been reported as potential bioinoculants in both greenhouse and field experiments, no PSS-based biofertilizers have been commercialized to date. In this regard, this review provides an overview mainly of the P solubilization activity of Streptomyces species, including their use as P biofertilizers in competitive agronomic practices and the mechanisms through which they release P by solubilization/mineralization, for both increasing P use efficiency in the soil and plant growth. This review further highlights and discusses the beneficial association of PSS with plants in detail with the latest developments and research to expand the knowledge concerning the use of PSS as P biofertilizers for field applications by exploiting their numerous advantages in improving crop production to meet global food demands.

2.
Mycorrhiza ; 31(1): 103-115, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33185700

RESUMO

Interactions between plants and soil affect plant-plant interactions and community composition by modifying soils conditions in plant-soil feedback, where associated microbes have the most crucial role. Both arbuscular mycorrhizal fungi (AMF) and microbial seed endophytes have been demonstrated to influence, directly or indirectly, biotic or abiotic soil properties, thus affecting subsequent plant growth, and community structure. However, little is known about how plant endophyte communities, individually or in interaction with AMF, affect plant-soil feedback processes. Here, we investigated, through a manipulative experiment, the behavior of endophyte-free and endophyte-associated Trifolium repens plants grown in soils previously conditioned by conspecific endophyte-free and endophyte-associated plants, inoculated or not by Rhizophagus intraradices. Furthermore, we identified microbial endophytes directly from the inner tissues of seeds by high-throughput sequencing, to compare seed fungal and bacterial endophyte composition. Results demonstrated that the outcome of simultaneous occurrence of seed endophytes and AMF on plant behavior depended on matching the endophytic status, i.e., either the presence or absence of seed microbial endophytes, of the conditioning and response phase. Seed fungal endophytes generated strong conspecific negative feedback, while seed bacterial endophytes proved to shift the feedback from negative to positive. Moreover, the simultaneous occurrence of both seed endophytes with AMF could either generate or expand negative plant-soil feedback effects. Our results show that seed and root symbionts can play a significant role on setting conspecific plant-soil feedback.


Assuntos
Micorrizas , Trifolium , Endófitos , Retroalimentação , Fungos , Raízes de Plantas , Sementes , Solo , Microbiologia do Solo
3.
Front Microbiol ; 11: 2044, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013749

RESUMO

The use of beneficial microbes as inoculants able to improve fitness, growth and health of plants also in stress conditions is an attractive low-cost and eco-friendly alternative strategy to harmful chemical inputs. Thirteen potential plant growth-promoting bacteria were isolated from the rhizosphere of wheat plants cultivated under drought stress and nitrogen deficiency. Among these, the two isolates TL8 and TL13 showed multiple plant growth promotion activities as production of indole-3-acetic acid (IAA), siderophores, ammonia, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production, the ability to solubilize phosphate as well as exerted antimicrobial activity against plant pathogens as Botrytis spp. and Phytophthora spp. The two selected strains were identified as Kosakonia pseudosacchari by sequencing of 16S rRNA gene. They resulted also tolerant to abiotic stress and were able to efficiently colonize plant roots as observed in vitro assay under fluorescence microscope. Based on the best PGP properties, the strain K. pseudosacchari TL13 was selected to develop a new microbial based formulate. A sustainable and environmentally friendly process for inoculant production was developed using agro-industrial by-products for microbial growth. Moreover, the application of K. pseudosacchari TL13- based formulates in pot experiment improved growth performance of maize plants.

4.
Front Plant Sci ; 11: 1137, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849698

RESUMO

Phosphate-solubilizing bacteria (PSB) have been reported to increase phosphate (P) content and plant growth. Their application in agricultural systems is an eco-friendly alternative strategy for limiting negative environmental impact of chemical fertilizers and increasing costs. Therefore, the aim of this study was to isolate and characterize new putative PSB to use as inoculum to enhance plant growth and increase P bioavailability in soil. Sixteen bacteria were isolated from Moroccan oat rhizosphere and were screened for their putative P-solubilization by semi-quantitative agar spot method. The two strains MS1B15 and MS1B13, identified as Streptomyces roseocinereus and Streptomyces natalensis, respectively, showed the maximum phosphate solubilization index (PSI = 1.75 and PSI = 1.63). After quantitative assay to determine phosphate solubilization activity, S. roseocinereus MS1B15 was selected for evaluating its putative plant growth promotion activities including production of siderophores, indole-3-acetic acid (IAA) and amino-cyclopropane-1-carboxylate (ACC) deaminase, nitrogen fixation and antimicrobial activity against soil-borne plant pathogens. Under greenhouse condition, barley plants inoculated with S. roseocinereus MS1B15 significantly increased shoot and ear length as well as available phosphorus in ears and leaves and P and N contents in the soil. Overall results showed that the selected strain S. roseocinereus MS1B15 could represent a potential candidate as biofertilizer to increase plant growth as well as P uptake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...