Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
2.
EBioMedicine ; 48: 364-376, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31521610

RESUMO

BACKGROUND: Tissue stem cells (SCs) and cancer cells proliferation is regulated by many common signalling mechanisms. These mechanisms temporally balance proliferation and differentiation events during normal tissue homeostasis and repair. However, the effect of these aberrant signalling mechanisms on the ultimate fate of SCs and cancer cells remains obscure. METHODS: To evaluate the functional effects of Secretory Phospholipase A2-IIA (sPLA2-IIA) induced abnormal signalling on normal SCs and cancer cells, we have used K14-sPLA2-IIA transgenic mice hair follicle stem cells (HFSCs), DMBA/TPA induced mouse skin tumour tissues, human oral squamous cell carcinoma (OSCC) and skin squamous cell carcinoma (SCC) derived cell lines. FINDINGS: Our study demonstrates that sPLA2-IIA induces rapid proliferation of HFSCs, thereby altering the proliferation dynamics leading to a complete loss of the slow cycling H2BGFP positive HFSCs. Interestingly, in vivo reversion study by JNK inhibition exhibited a significant delay in post depilation hair growth, confirming that sPLA2-IIA promotes HFSCs proliferation through JNK/c-Jun signalling. In a different cellular context, we showed increased expression of sPLA2-IIA in human OSCC and mouse skin cancer tissues. Importantly, a xenograft of sPLA2-IIA knockdown cells of OSCC and SCC cell lines showed a concomitant reduction of tumour volume in NOD-SCID mice and decreased JNK/c-Jun signalling. INTERPRETATION: This study unravels how an increased proliferation induced by a common proliferation inducer (sPLA2-IIA) alters the fate of normal SCs and cancer cells distinctively through common JNK/c-Jun signalling. Thus, sPLA2-IIA can be a potential target for various diseases including cancer. FUND: This work was partly supported by the Indian Council of Medical Research (ICMR-3097) and ACTREC (42) grants.


Assuntos
Carcinoma/genética , Carcinoma/metabolismo , Fosfolipases A2 do Grupo II/genética , Folículo Piloso/citologia , Células-Tronco/metabolismo , Animais , Carcinoma/patologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Fosfolipases A2 do Grupo II/metabolismo , Humanos , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Transgênicos
3.
Oncol Rep ; 41(4): 2289-2298, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30816493

RESUMO

Oral squamous cell carcinoma (OSCC) is a leading cause of mortality in India owing to the high percentage of tobacco chewers, smokers and alcohol consumption. OSCC is highly heterogeneous in nature; therefore poses a challenge in the treatment of the patient. To better understand the heterogeneity of the tumors, an in vitro cell line model is required. However, the efficiency of establishing cell lines from the oral tumors is low. In the present study, three novel cell lines, namely ACOSC3, ACOSC4, and ACOSC16, were isolated and characterized from advanced­stage treatment­naive OSCCs originating from the buccal mucosa. The three cell lines exhibited polygonal morphology, which is typical of epithelial cells. Furthermore, immunofluorescence revealed the expression of keratins 8 and 14, thereby confirming the epithelial origin of the cells. DNA content analysis of the three OSCC cell lines revealed aneuploidy. Furthermore, an in vitro orosphere assay revealed the formation of primary orospheres. Notably, the OSCC cell lines were able to give rise to tumors when administered subcutaneously into non­obese diabetic/severe combined immune deficiency mice. The novelty of the cell lines was also validated by performing short tandem repeat profiling; the STR profiles of the present cell lines did not significantly match with any known established OSCC cell lines present in the DSMZ database, thereby confirming the unique identity of these lines. These cell lines established from tumor samples derived from Indian OSCC patients provide a valuable resource to understand the molecular mechanism involved in tumor resistance and recurrence.


Assuntos
Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Neoplasias Bucais/patologia , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Mucosa Bucal/citologia , Mucosa Bucal/patologia , Cultura Primária de Células , Esferoides Celulares , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Rep ; 7(1): 11619, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912581

RESUMO

Secretory phospholipase A2 Group-IIA (sPLA2-IIA) is involved in lipid catabolism and growth promoting activity. sPLA2-IIA is deregulated in many pathological conditions including various cancers. Here, we have studied the role of sPLA2-IIA in the development of cyclic alopecia and wound healing response in relation to complete loss of hair follicle stem cells (HFSCs). Our data showed that overexpression of sPLA2-IIA in homozygous mice results in hyperproliferation and terminal epidermal differentiation followed by hair follicle cycle being halted at anagen like stage. In addition, sPLA2-IIA induced hyperproliferation leads to compl pathological conditions including various cancers. Here ete exhaustion of hair follicle stem cell pool at PD28 (Postnatal day). Importantly, sPLA2-IIA overexpression affects the hair shaft differentiation leading to development of cyclic alopecia. Molecular investigation study showed aberrant expression of Sox21, Msx2 and signalling modulators necessary for proper differentiation of inner root sheath (IRS) and hair shaft formation. Further, full-thickness skin wounding on dorsal skin of K14-sPLA2-IIA homozygous mice displayed impaired initial healing response. Our results showed the involvement of sPLA2-IIA in regulation of matrix cells differentiation, hair shaft formation and complete loss of HFSCs mediated impaired wound healing response. These novel functions of sPLA2-IIA may have clinical implications in alopecia, cancer development and ageing.


Assuntos
Alopecia/etiologia , Alopecia/patologia , Fosfolipases A2 do Grupo II/genética , Folículo Piloso/metabolismo , Folículo Piloso/patologia , Cabelo/patologia , Cicatrização/genética , Alopecia/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Imunofluorescência , Regulação da Expressão Gênica , Genótipo , Fosfolipases A2 do Grupo II/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , Transdução de Sinais
5.
Stem Cells ; 34(9): 2407-17, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27299855

RESUMO

Secretory phospholipase A2 Group-IIA (sPLA2 -IIA) catalyzes the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. sPLA2 -IIA is deregulated in various cancers; however, its role in hair follicle stem cell (HFSC) regulation is obscure. Here we report a transgenic mice overexpressing sPLA2 -IIA (K14-sPLA2 -IIA) showed depletion of HFSC pool. This was accompanied with increased differentiation, loss of ortho-parakeratotic organization and enlargement of sebaceous gland, infundibulum and junctional zone. The colony forming efficiency of keratinocytes was significantly reduced. Microarray profiling of HFSCs revealed enhanced level of epithelial mitogens and transcription factors, c-Jun and FosB that may be involved in proliferation and differentiation. Moreover, K14-sPLA2 -IIA keratinocytes showed enhanced activation of EGFR and JNK1/2 that led to c-Jun activation, which co-related with enhanced differentiation. Further, depletion of stem cells in bulge is associated with high levels of chromatin silencing mark, H3K27me3 and low levels of an activator mark, H3K9ac suggestive of alteration in gene expression contributing toward stem cells differentiation. Our results, first time uncovered that overexpression of sPLA2 -IIA lead to depletion of HFSCs and differentiation associated with altered histone modification. Thus involvement of sPLA2 -IIA in stem cells regulation and disease pathogenesis suggest its prospective clinical implications. Stem Cells 2016;34:2407-2417.


Assuntos
Diferenciação Celular , Epiderme/enzimologia , Fosfolipases A2 do Grupo II/metabolismo , Folículo Piloso/citologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Células-Tronco/citologia , Envelhecimento/metabolismo , Animais , Proliferação de Células , Ativação Enzimática , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Histonas/metabolismo , Homeostase , Hiperplasia , Queratinócitos/metabolismo , Lisina/metabolismo , Metilação , Camundongos Transgênicos , Paraceratose/patologia , Glândulas Sebáceas/patologia , Transdução de Sinais , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA