Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 114(3): 223-236, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37227004

RESUMO

Eosinophils are present in the thymus of mammals, yet their function at this site during homeostatic development is unknown. We used flow cytometry to determine the abundance and phenotype of eosinophils (here defined as SSchigh SiglecF+ CD11b+ CD45+ cells) in the thymus of mice during the neonatal period, the later postnatal period, and into adulthood. We show that both the total number of thymic eosinophils and their frequency among leukocytes increase over the first 2 wk of life and that their accumulation in the thymus is dependent on the presence of an intact bacterial microbiota. We report that thymic eosinophils express the interleukin-5 receptor (CD125), CD80, and IDO, and that subsets of thymic eosinophils express CD11c and major histocompatibility complex II (MHCII). We found that the frequency of MHCII-expressing thymic eosinophils increases over the first 2 wk of life, and that during this early-life period the highest frequency of MHCII-expressing thymic eosinophils is located in the inner medullary region. These data suggest a temporal and microbiota-dependent regulation of eosinophil abundance and functional capabilities in the thymus.


Assuntos
Eosinófilos , Timo , Camundongos , Animais , Citometria de Fluxo , Complexo Principal de Histocompatibilidade , Mamíferos
2.
Front Immunol ; 14: 1050594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814930

RESUMO

The corneal epithelium is continuously subjected to external stimuli that results in varying degrees of cellular damage. The use of live-cell imaging approaches has facilitated understanding of the cellular and molecular mechanisms underlying the corneal epithelial wound healing process. Here, we describe a live, ex vivo, whole-eye approach using laser scanning confocal microscopy to simultaneously induce and visualize short-term cellular responses following microdamage to the corneal epithelium. Live-cell imaging of corneal cell layers was enabled using the lipophilic fluorescent dyes, SGC5 or FM4-64, which, when injected into the anterior chamber of enucleated eyes, readily penetrated and labelled cell membranes. Necrotic microdamage to a defined region (30 µm x 30 µm) through the central plane of the corneal basal epithelium was induced by continuously scanning for at least one minute using high laser power and was dependent on the presence of lipophilic fluorescent dye. This whole-mount live-cell imaging and microdamage approach was used to examine the behavior of Cx3cr1:GFP-expressing resident corneal stromal macrophages (RCSMs). In undamaged corneas, RCSMs remained stationary, but exhibited a constant extension and retraction of short (~5 µm) semicircular, pseudopodia-like processes reminiscent of what has previously been reported in corneal dendritic cells. Within minutes of microdamage, nearby anterior RCSMs became highly polarized and extended projections towards the damaged region. The extension of the processes plateaued after about 30 minutes and remained stable over the course of 2-3 hours of imaging. Retrospective immunolabeling showed that these responding RCSMs were MHC class II+. This study adds to existing knowledge of immune cell behavior in response to corneal damage and introduces a simple corneal epithelial microdamage and wound healing paradigm.


Assuntos
Epitélio Corneano , Estudos Retrospectivos , Córnea , Macrófagos , Corantes Fluorescentes , Lasers
3.
Nucleic Acids Res ; 50(3): 1620-1638, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35104878

RESUMO

The life of RNA polymerase II (RNAPII) transcripts is shaped by the dynamic formation of mutually exclusive ribonucleoprotein complexes (RNPs) that direct transcript biogenesis and turnover. A key regulator of RNA metabolism in the nucleus is the scaffold protein ARS2 (arsenic resistance protein 2), bound to the cap binding complex (CBC). We report here that alternative splicing of ARS2's intron 5, generates cytoplasmic isoforms that lack 270 amino acids from the N-terminal of the protein and are functionally distinct from nuclear ARS2. Switching of ARS2 isoforms within the CBC in the cytoplasm has dramatic functional consequences, changing ARS2 from a NMD inhibitor to a NMD promoter that enhances the binding of UPF1 to NCBP1 and ERF1, favouring SURF complex formation, SMG7 recruitment and transcript degradation. ARS2 isoform exchange is also relevant during arsenic stress, where cytoplasmic ARS2 promotes a global response to arsenic in a CBC-independent manner. We propose that ARS2 isoform switching promotes the proper recruitment of RNP complexes during NMD and the cellular response to arsenic stress. The existence of non-redundant ARS2 isoforms is relevant for cell homeostasis, and stress response.


Assuntos
Arsênio , Degradação do RNAm Mediada por Códon sem Sentido , Arsênio/metabolismo , Núcleo Celular/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Helicases/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
4.
Transl Vis Sci Technol ; 9(11): 19, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33117610

RESUMO

Purpose: Congenital stationary night blindness 2A (CSNB2A) is a genetic retinal disorder characterized by poor visual acuity, nystagmus, strabismus, and other signs of retinal dysfunction resulting from mutations in Cacna1f-the gene coding for the pore-forming subunit of the calcium channel CaV1.4. Mouse models of CSNB2A have shown that mutations causing the disease deleteriously affect photoreceptors and their synapses with second-order neurons. This study was undertaken to evaluate whether transgenic expression of Cacna1f could rescue morphology and visual function in a Cacna1f-KO model of CSNB2A. Methods: Strategic creation, breeding and use of transgenic mouse lines allowed for Cre-driven retina-specific expression of Cacna1f in a CSNB2A model. Transgene expression and retinal morphology were investigated with immunohistochemistry in retinal wholemounts or cross-sections. Visual function was assessed by optokinetic response (OKR) analysis and electroretinography (ERG). Results: Mosaic, prenatal expression of Cacna1f in the otherwise Cacna1f-KO retina was sufficient to rescue some visual function. Immunohistochemical analyses demonstrated wild-type-like photoreceptor and synaptic morphology in sections with transgenic expression of Cacna1f. Conclusions: This report describes a novel system for Cre-inducible expression of Cacna1f in a Cacna1f-KO mouse model of CSNB2A and provides preclinical evidence for the potential use of gene therapy in the treatment of CSNB2A. Translational Relevance: These data have relevance in the treatment of CSNB2A and in understanding how photoreceptor integration might be achieved in retinas in which photoreceptors have been lost, such as retinitis pigmentosa, age-related macular degeneration, and other degenerative conditions.


Assuntos
Canais de Cálcio Tipo L , Oftalmopatias Hereditárias , Cegueira Noturna , Animais , Canais de Cálcio Tipo L/genética , Oftalmopatias Hereditárias/genética , Doenças Genéticas Ligadas ao Cromossomo X , Camundongos , Camundongos Transgênicos , Miopia , Cegueira Noturna/genética , Retina
5.
Biochem Cell Biol ; 98(1): 50-60, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30673303

RESUMO

During a developmental period that extends postnatally in the mouse, proliferating multipotent retinal progenitor cells produce one of 7 major cell types (rod, cone, bipolar, horizontal, amacrine, ganglion, and Müller glial cells) as they exit the cell cycle in consecutive waves. Cell production in the retina is tightly regulated by intrinsic, extrinsic, spatial, and temporal cues, and is coupled to the timing of cell cycle exit. Arsenic-resistance protein 2 (ARS2, also known as SRRT) is a component of the nuclear cap-binding complex involved in RNA Polymerase II transcription, and is required for cell cycle progression. We show that postnatal retinal progenitor cells (RPCs) require ARS2 for proper progression through S phase, and ARS2 disruption leads to early exit from the cell cycle. Furthermore, we observe an increase in the proportion of cells expressing a rod photoreceptor marker, and a loss of Müller glia marker expression, indicating a role for ARS2 in regulating cell fate specification or differentiation. Knockdown of Flice Associated Huge protein (FLASH), which interacts with ARS2 and is required for cell cycle progression and 3'-end processing of replication-dependent histone transcripts, phenocopies ARS2 knockdown. These data implicate ARS2-FLASH-mediated histone mRNA processing in regulating RPC cell cycle kinetics and neuroglial cell fate specification during postnatal retinal development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Retina/citologia , Retina/metabolismo , Fase S , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Camundongos , Fenótipo , Fatores de Transcrição/genética
6.
Cell Mol Life Sci ; 77(20): 4117-4131, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31822965

RESUMO

Paralog factors are usually described as consolidating biological systems by displaying redundant functionality in the same cells. Here, we report that paralogs can also cooperate in distinct cell populations at successive stages of differentiation. In mouse embryonic spinal cord, motor neurons and V2 interneurons differentiate from adjacent progenitor domains that share identical developmental determinants. Therefore, additional strategies secure respective cell fate. In particular, Hb9 promotes motor neuron identity while inhibiting V2 differentiation, whereas Chx10 stimulates V2a differentiation while repressing motor neuron fate. However, Chx10 is not present at the onset of V2 differentiation and in other V2 populations. In the present study, we show that Vsx1, the single paralog of Chx10, which is produced earlier than Chx10 in V2 precursors, can inhibit motor neuron differentiation and promote V2 interneuron production. However, the single absence of Vsx1 does not impact on V2 fate consolidation, suggesting that lack of Vsx1 may be compensated by other factors. Nevertheless, Vsx1 cooperates with Chx10 to prevent motor neuron differentiation in early V2 precursors although these two paralog factors are not produced in the same cells. Hence, this study uncovers an original situation, namely labor division, wherein paralog genes cooperate at successive steps of neuronal development.


Assuntos
Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Medula Espinal/fisiologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/genética , Células HEK293 , Humanos , Camundongos
7.
Br J Radiol ; 93(1106): 20190742, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778316

RESUMO

OBJECTIVE: One of the major issues in current radiotherapy (RT) is the normal tissue toxicity. A smart combination of agents within the tumor would allow lowering the RT dose required while minimizing the damage to healthy tissue surrounding the tumor. We chose gold nanoparticles (GNPs) and docetaxel (DTX) as our choice of two radiosensitizing agents. They have a different mechanism of action which could lead to a synergistic effect. Our first goal was to assess the variation in GNP uptake, distribution, and retention in the presence of DTX. Our second goal was to assess the therapeutic results of the triple combination, RT/GNPs/DTX. METHODS: We used HeLa and MDA-MB-231 cells for our study. Cells were incubated with GNPs (0.2 nM) in the absence and presence of DTX (50 nM) for 24 h to determine uptake, distribution, and retention of NPs. For RT experiments, treated cells were given a 2 Gy dose of 6 MV photons using a linear accelerator. RESULTS: Concurrent treatment of DTX and GNPs resulted in over 85% retention of GNPs in tumor cells. DTX treatment also forced GNPs to be closer to the most important target, the nucleus, resulting in a decrease in cell survival and increase in DNA damage with the triple combination of RT/ GNPs/DTX vs RT/DTX. Our experimental therapeutic results were supported by Monte Carlo simulations. CONCLUSION: The ability to not only trap GNPs at clinically feasible doses but also to retain them within the cells could lead to meaningful fractionated treatments in future combined cancer therapy. Furthermore, the suggested triple combination of RT/GNPs/DTX may allow lowering the RT dose to spare surrounding healthy tissue. ADVANCES IN KNOWLEDGE: This is the first study to show intracellular GNP transport disruption by DTX, and its advantage in radiosensitization.


Assuntos
Antineoplásicos/farmacologia , Docetaxel/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas , Radiossensibilizantes/farmacologia , Antineoplásicos/farmacocinética , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Docetaxel/farmacocinética , Sinergismo Farmacológico , Feminino , Ouro/farmacocinética , Células HeLa , Humanos , Radiossensibilizantes/farmacocinética , Neoplasias de Mama Triplo Negativas/radioterapia , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/radioterapia
8.
Invest Ophthalmol Vis Sci ; 59(15): 5824-5835, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30535423

RESUMO

Purpose: Despite numerous studies associating Visual System Homeobox 1 (VSX1), with posterior polymorphous corneal dystrophy and keratoconus, its role in these diseases is unclear. Here we examine the pathogenicity of VSX1 missense mutations in vitro and in a mouse genetic model. Methods: Vsx1 transcriptional repressor activity, protein stability, and subcellular localization activity, was examined using luciferase reporter-based assays, western blotting and immunolabeling, respectively, in transfected human embryonic kidney 293T cells. A genetic model for VSX1 p.P247R was generated to investigate pathogenicity of the mutation, in vivo. A wholemount confocal imaging approach on unfixed intact eyes was developed to examine corneal morphology, curvature, and thickness. Immunolabeling and electroretinography was used to examine retinal phenotype. Results: A mutation corresponding to human VSX1 p.P247R led to enhanced transcriptional repressor activity, in vitro. A mouse model for VSX1 p.P247R did not have any observable corneal defect, but did exhibit an abnormal electroretinogram response characterized by a more prominent ON as opposed to OFF panretinal responsiveness. In vitro analysis of additional VSX1 missense mutations showed that they either enhanced repressor activity or did not alter activity. Conclusions: Our results indicate that although VSX1 sequence variants can alter transcriptional activity, in the context of a mouse genetic model, at least one of these changes does not lead to corneal abnormalities. While we cannot exclude a role for VSX1 as a risk factor for corneal disease, on its own, it does not appear to play a major causative role.


Assuntos
Distrofias Hereditárias da Córnea/genética , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Ceratocone/genética , Mutação de Sentido Incorreto/genética , Animais , Distrofias Hereditárias da Córnea/diagnóstico , Distrofias Hereditárias da Córnea/fisiopatologia , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Células HEK293 , Humanos , Ceratocone/diagnóstico , Ceratocone/fisiopatologia , Masculino , Camundongos , Plasmídeos , Retina/fisiopatologia , Ativação Transcricional/fisiologia
9.
BMC Genomics ; 19(1): 820, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442116

RESUMO

BACKGROUND: PAX6 is a homeodomain transcription factor that acts in a highly dosage-sensitive manner to regulate the development and function of the eyes, nose, central nervous system, gut, and endocrine pancreas. Several individual microRNAs (miRNA) have been implicated in regulating PAX6 in different cellular contexts, but a more general view of how they contribute to the fine-tuning and homeostasis of PAX6 is poorly understood. RESULTS: Here, a comprehensive analysis of the Pax6 3' untranslated region was performed to map potential miRNA recognition elements and served as a backdrop for miRNA expression profiling experiments to identify potential cell/tissue-specific miRNA codes. Pax6 3'UTR pull-down studies identified a cohort of miRNA interactors in pancreatic αTC1-6 cells that, based on the spacing of their recognition sites in the Pax6 3'UTR, revealed 3 clusters where cooperative miRNA regulation may occur. Some of these interacting miRNAs have been implicated in α cell function but have not previously been linked to Pax6 function and may therefore represent novel PAX6 regulators. CONCLUSIONS: These findings reveal a regulatory landscape upon which miRNAs may participate in the developmental control, fine-tuning and/or homeostasis of PAX6 levels.


Assuntos
Regiões 3' não Traduzidas/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Fator de Transcrição PAX6/genética , Animais , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Feminino , Perfilação da Expressão Gênica/métodos , Homeostase/genética , Masculino , Camundongos da Linhagem 129 , MicroRNAs/metabolismo , Fator de Transcrição PAX6/metabolismo
10.
Mol Ther Nucleic Acids ; 13: 144-153, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30290306

RESUMO

Aniridia is a rare congenital syndrome that is associated with reduced visual acuity and progressive loss of vision. Aniridia patients may also develop systemic health issues associated with defects in the pancreas, digestive, and central nervous systems. The spectrum of symptoms associated with aniridia is due to haploinsufficiency of the paired box 6 gene (PAX6) and its role in the development and maintenance of the affected tissues. Here, we isolated pancreatic islets from mice heterozygous for Pax6 to test whether a Pax6-specific miRNA suppression (target protector) strategy can restore PAX6 protein levels. We show that miR-7 and miR-375 target specific sites within the Pax6 3' UTR in a mouse pancreatic ß-insulinoma cell line. Tough decoys (Tuds) against miR-7 and miR-375 increase expression of a mouse Pax6 3' UTR luciferase reporter and increase PAX6 protein levels in these cells. Finally, we demonstrate that the shielding of the miR-7 binding site with a target protector restores PAX6 protein levels in the Pax6 heterozygous islets. The data presented here represent a proof of concept for RNA-based therapy for the progressive defects associated with aniridia and suggest the target protector approach may be a useful therapeutic strategy for other haploinsufficiency diseases.

11.
Epigenetics ; 12(11): 934-944, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29099289

RESUMO

MeCP2 binds to methylated DNA in a chromatin context and has an important role in cancer and brain development and function. Histone deacetylase (HDAC) inhibitors are currently being used to palliate many cancer and neurological disorders. Yet, the molecular mechanisms involved are not well known for the most part and, in particular, the relationship between histone acetylation and MeCP2 is not well understood. In this paper, we study the effect of the HDAC inhibitor trichostatin A (TSA) on MeCP2, a protein whose dysregulation plays an important role in these diseases. We find that treatment of cells with TSA decreases the phosphorylation state of this protein and appears to result in a higher MeCP2 chromatin binding affinity. Yet, the binding dynamics with which the protein binds to DNA appear not to be significantly affected despite the chromatin reorganization resulting from the high levels of acetylation. HDAC inhibition also results in an overall decrease in MeCP2 levels of different cell lines. Moreover, we show that miR132 increases upon TSA treatment, and is one of the players involved in the observed downregulation of MeCP2.


Assuntos
Cromatina/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Proteína 2 de Ligação a Metil-CpG/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Células 3T3 , Animais , Células HEK293 , Células HeLa , Humanos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Fosforilação , Ligação Proteica/efeitos dos fármacos
12.
BMC Bioinformatics ; 17: 190, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27122020

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small ~22 nucleotide non-coding RNAs that function as post-transcriptional regulators of messenger RNA (mRNA) through base-pairing to 6-8 nucleotide long target sites, usually located within the mRNA 3' untranslated region. A common approach to validate and probe microRNA-mRNA interactions is to mutate predicted target sites within the mRNA and determine whether it affects miRNA-mediated activity. The introduction of miRNA target site mutations, however, is potentially problematic as it may generate new, "illegitimate sites" target sites for other miRNAs, which may affect the experimental outcome. While it is possible to manually generate and check single miRNA target site mutations, this process can be time consuming, and becomes particularly onerous and error prone when multiple sites are to be mutated simultaneously. We have developed a modular Java-based system called ImiRP (Illegitimate miRNA Predictor) to solve this problem and to facilitate miRNA target site mutagenesis. RESULTS: The ImiRP interface allows users to input a sequence of interest, specify the locations of multiple predicted target sites to mutate, and set parameters such as species, mutation strategy, and disallowed illegitimate target site types. As mutant sequences are generated, ImiRP utilizes the miRBase high confidence miRNA dataset to identify illegitimate target sites in each mutant sequence by comparing target site predictions between input and mutant sequences. ImiRP then assembles a final mutant sequence in which all specified target sites have been mutated. CONCLUSIONS: ImiRP is a mutation generator program that enables selective disruption of specified miRNA target sites while ensuring predicted target sites for other miRNAs are not inadvertently created. ImiRP supports mutagenesis of single and multiple miRNA target sites within a given sequence, including sites that overlap. This software will be particularly useful for studies looking at microRNA cooperativity, where mutagenesis of multiple microRNA target sites may be desired. The software is available at imirp.org and is available open source for download through GitHub ( https://github.com/imirp ).


Assuntos
MicroRNAs/genética , Mutação , Software , Regiões 3' não Traduzidas , Pareamento de Bases , Biologia Computacional , Regulação da Expressão Gênica , RNA Mensageiro/genética
13.
Front Mol Neurosci ; 9: 145, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28082864

RESUMO

Spinal ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities. Interneurons arise during embryonic development from distinct progenitor domains distributed orderly along the dorso-ventral axis of the neural tube. A single ventral progenitor population named p2 generates at least five V2 interneuron subsets. Whether the diversification of V2 precursors into multiple subsets occurs within the p2 progenitor domain or involves a later compartment of early-born V2 interneurons remains unsolved. Here, we provide evidence that the p2 domain produces an intermediate V2 precursor compartment characterized by the transient expression of the transcriptional repressor Vsx1. These cells display an original repertoire of cellular markers distinct from that of any V2 interneuron population. They have exited the cell cycle but have not initiated neuronal differentiation. They coexpress Vsx1 and Foxn4, suggesting that they can generate the known V2 interneuron populations as well as possible additional V2 subsets. Unlike V2 interneurons, the generation of Vsx1-positive precursors does not depend on the Notch signaling pathway but expression of Vsx1 in these cells requires Pax6. Hence, the p2 progenitor domain generates an intermediate V2 precursor compartment, characterized by the presence of the transcriptional repressor Vsx1, that contributes to V2 interneuron development.

14.
Mol Cell Biol ; 35(21): 3753-67, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26303529

RESUMO

ARS2 is a regulator of RNA polymerase II transcript processing through its role in the maturation of distinct nuclear cap-binding complex (CBC)-controlled RNA families. In this study, we examined ARS2 domain function in transcript processing. Structural modeling based on the plant ARS2 orthologue, SERRATE, revealed 2 previously uncharacterized domains in mammalian ARS2: an N-terminal domain of unknown function (DUF3546), which is also present in SERRATE, and an RNA recognition motif (RRM) that is present in metazoan ARS2 but not in plants. Both the DUF3546 and zinc finger domain (ZnF) were required for association with microRNA and replication-dependent histone mRNA. Mutations in the ZnF disrupted interaction with FLASH, a key component in histone pre-mRNA processing. Mutations targeting the Mid domain implicated it in DROSHA interaction and microRNA biogenesis. The unstructured C terminus was required for interaction with the CBC protein CBP20, while the RRM was required for cell cycle progression and for binding to FLASH. Together, our results support a bridging model in which ARS2 plays a central role in RNA recognition and processing through multiple protein and RNA interactions.


Assuntos
Ciclo Celular , Histonas/genética , MicroRNAs/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA , Histonas/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Complexo Proteico Nuclear de Ligação ao Cap , Proteínas Nucleares/química , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Fase S , Fatores de Transcrição/química , Fatores de Transcrição/genética , Regulação para Cima
15.
BMC Dev Biol ; 13: 24, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23758927

RESUMO

BACKGROUND: The explanted, developing rodent retina provides an efficient and accessible preparation for use in gene transfer and pharmacological experimentation. Many of the features of normal development are retained in the explanted retina, including retinal progenitor cell proliferation, heterochronic cell production, interkinetic nuclear migration, and connectivity. To date, live imaging in the developing retina has been reported in non-mammalian and mammalian whole-mount samples. An integrated approach to rodent retinal culture/transfection, live imaging, cell tracking, and analysis in structurally intact explants greatly improves our ability to assess the kinetics of cell production. RESULTS: In this report, we describe the assembly and maintenance of an in vitro, CO2-independent, live mouse retinal preparation that is accessible by both upright and inverted, 2-photon or confocal microscopes. The optics of this preparation permit high-quality and multi-channel imaging of retinal cells expressing fluorescent reporters for up to 48h. Tracking of interkinetic nuclear migration within individual cells, and changes in retinal progenitor cell morphology are described. Follow-up, hierarchical cluster screening revealed that several different dependent variable measures can be used to identify and group movement kinetics in experimental and control samples. CONCLUSIONS: Collectively, these methods provide a robust approach to assay multiple features of rodent retinal development using live imaging.


Assuntos
Retina/crescimento & desenvolvimento , Animais , Cinética , Camundongos , Retina/citologia
16.
Gene Expr Patterns ; 13(3-4): 78-83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23277114

RESUMO

Notch signaling is an important regulator of both developmental and post-developmental processes. In the developing retina, Notch1 is required for the maintenance of retinal progenitor cells and for inhibiting photoreceptor cell fate, while Notch3 is required for inhibiting ganglion cell fate. Here we used immunolabeling coupled with a knock-in reporter approach to obtain a detailed spatiotemporal expression pattern of Notch2 during mouse retinal development. Although previous in situ hybridization studies did not reveal appreciable levels of Notch2 in the developing retina, we detected NOTCH2 protein and reporter expression in early embryonic retinal progenitors that also expressed the Notch downstream gene, HES1. In the postnatal retina, NOTCH2, as well as the Notch downstream genes, HES1 and SOX9, were detected in VSX2/Cyclin D1/SOX2-expressing cells in the postnatal retina, and in the mature retina NOTCH2 was most abundant in Müller glia. Our findings indicate a potential role for Notch2 in the developing and mature retina.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Homeodomínio/genética , Receptor Notch2/genética , Retina/crescimento & desenvolvimento , Fatores de Transcrição SOX9/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Camundongos , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Receptor Notch2/metabolismo , Retina/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição HES-1
17.
Development ; 139(24): 4644-55, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23172916

RESUMO

Interneuronal subtype diversity lies at the heart of the distinct molecular properties and synaptic connections that shape the formation of the neuronal circuits that are necessary for the complex spatial and temporal processing of sensory information. Here, we investigate the role of Irx6, a member of the Iroquois homeodomain transcription factor family, in regulating the development of retinal bipolar interneurons. Using a knock-in reporter approach, we show that, in the mouse retina, Irx6 is expressed in type 2 and 3a OFF bipolar interneurons and is required for the expression of cell type-specific markers in these cells, likely through direct transcriptional regulation. In Irx6 mutant mice, presumptive type 3a bipolar cells exhibit an expansion of their axonal projection domain to the entire OFF region of the inner plexiform layer, and adopt molecular features of both type 2 and 3a bipolar cells, highlighted by the ectopic upregulation of neurokinin 3 receptor (Nk3r) and Vsx1. These findings reveal Irx6 as a key regulator of type 3a bipolar cell identity that prevents these cells from adopting characteristic features of type 2 bipolar cells. Analysis of the Irx6;Vsx1 double null retina suggests that the terminal differentiation of type 2 bipolar cells is dependent on the combined expression of the transcription factors Irx6 and Vsx1, but also points to the existence of Irx6;Vsx1-independent mechanisms in regulating OFF bipolar subtype-specific gene expression. This work provides insight into the generation of neuronal subtypes by revealing a mechanism in which opposing, yet interdependent, transcription factors regulate subtype identity.


Assuntos
Diferenciação Celular/genética , Proteínas de Homeodomínio/fisiologia , Interneurônios/fisiologia , Retina/embriologia , Retina/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter/genética , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Interneurônios/citologia , Interneurônios/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Neurogênese/genética , Células Bipolares da Retina/metabolismo , Células Bipolares da Retina/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
18.
J Comp Neurol ; 520(1): 117-29, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21674500

RESUMO

Retinal bipolar cells make up a class of at least 11 distinct interneurons that have been classified through morphological and molecular approaches. Previous work has shown that the paired-like homeodomain transcription factor Vsx1 is essential for the proper development of a subset of these interneurons. In Vsx1-null mice, bipolar cells are properly specified but exhibit terminal differentiation defects characterized by reduced expression of OFF bipolar cell markers and defects in OFF visual signaling. Here, we further examined the role of Vsx1 in OFF bipolar cells using recently identified cell-type-specific markers. In contrast to its previously characterized expression in type 2 OFF bipolar cells, Vsx1 expression was not detected in type 3 OFF bipolar cells, by either immunohistological or transgenic reporter labeling approaches. This observation was unexpected given previous findings that Cabp5 immunolabeling of type 3 bipolar cell axon terminals is reduced in Vsx1-null mice. However, we observed reduced levels of the type 3a bipolar cell marker hyperpolarization-activated and cyclic nucleotide-gated channel 4 (HCN4) in Vsx1-null mice, which is consistent with a requirement for Vsx1 in type 3 bipolar cell differentiation. In contrast, expression of the type 3b bipolar cell marker regulatory subunit RII-beta of protein kinase A was unchanged. Despite the absence of Vsx1 in mature type 3 bipolar cells, colabeling of Vsx1 and HCN4 was observed at postnatal stages. These findings reveal a role for Vsx1 in type 3a bipolar cells and suggest that Vsx1 function is required transiently in this cell type during the postnatal period.


Assuntos
Diferenciação Celular/fisiologia , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Células Bipolares da Retina/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Proteínas do Olho/genética , Genes Reporter , Proteínas de Homeodomínio/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Camundongos , Camundongos Transgênicos , Células Bipolares da Retina/citologia
19.
PLoS One ; 6(10): e27145, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22073130

RESUMO

Approaches for manipulating cell type-specific gene expression during development depend on the identification of novel genetic tools. Here, we report the generation of a transgenic mouse line that utilizes Vsx2 upstream sequences to direct Cre recombinase to developing retinal bipolar cells. In contrast to the endogenous Vsx2 expression pattern, transgene expression was not detected in proliferating retinal progenitor cells and was restricted to post-mitotic bipolar cells. Cre immunolabeling was detected in rod bipolar cells and a subset of ON and OFF cone bipolar cells. Expression was first observed at postnatal day 3 and was detectable between 24 hours and 36 hours after the last S-phase of the cell cycle. The appearance of Cre-immunolabeled cells preceded the expression of bipolar cell type-specific markers such as PKCα and Cabp5 suggesting that transgene expression is initiated prior to terminal differentiation. In the presence of a constitutive conditional reporter transgene, reporter fluorescence was detected in Cre-expressing bipolar cells in the mature retina as expected, but was also observed in Cre-negative Type 2 bipolar cells and occasionally in Cre-negative photoreceptor cells. Together these findings reveal a new transgenic tool for directing gene expression to post-mitotic retinal precursors that are mostly committed to a bipolar cell fate.


Assuntos
Diferenciação Celular , Proteínas de Homeodomínio/fisiologia , Mitose/fisiologia , Retina/metabolismo , Células Bipolares da Retina/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/fisiologia , Transgenes/fisiologia , Animais , Células Cultivadas , Feminino , Humanos , Integrases , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Retina/citologia , Células Bipolares da Retina/citologia , Células-Tronco/citologia
20.
J Neurosci ; 31(37): 13118-27, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21917795

RESUMO

Although retinal bipolar cells represent a morphologically well defined population of retinal interneurons, very little is known about the developmental mechanisms that regulate their processing. Furthermore, the identity of specific bipolar cell types that function in distinct visual circuits remains poorly understood. Here, we show that the homeobox gene Vsx1 is expressed in Type 7 ON bipolar cells. In the absence of Vsx1, Type 7 bipolar cells exhibit proper morphological specification but show defects in terminal gene expression. Vsx1 is required for the repression of bipolar cell-specific markers, including Calcium-binding protein 5 and Chx10. This contrasts its genetic requirement as an activator of gene expression in OFF bipolar cells. To assess possible ON signaling defects in Vsx1-null mice, we recorded specifically from ON-OFF directionally selective ganglion cells (DSGCs), which cofasciculate with Type 7 bipolar cell terminals. Vsx1-null ON-OFF DSGCs received more sustained excitatory synaptic input, possibly due to Type 7 bipolar cell defects. Interestingly, in Vsx1-null mice, the directionally selective circuit is functional but compromised. Together, these findings indicate that Vsx1 regulates terminal gene expression in Type 7 bipolar cells and is necessary for proper ON visual signaling within a directionally selective circuit.


Assuntos
Diferenciação Celular/fisiologia , Proteínas do Olho/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/fisiologia , Percepção de Movimento/fisiologia , Células Bipolares da Retina/fisiologia , Potenciais de Ação/fisiologia , Animais , Diferenciação Celular/genética , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Regulação da Expressão Gênica/genética , Técnicas de Introdução de Genes/métodos , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Estimulação Luminosa/métodos , Células Bipolares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Fatores de Transcrição/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...