Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Theranostics ; 14(7): 2706-2718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773966

RESUMO

Background: Neurotropic virus infections actively manipulate host cell metabolism to enhance virus neurovirulence. Although hyperglycemia is common during severe infections, its specific role remains unclear. This study investigates the impact of hyperglycemia on the neurovirulence of enterovirus 71 (EV71), a neurovirulent virus relying on internal ribosome entry site (IRES)-mediated translation for replication. Methods: Utilizing hSCARB2-transgenic mice, we explore the effects of hyperglycemia in EV71 infection and elucidate the underlying mechanisms. Results: Remarkably, administering insulin alone to reduce hyperglycemia in hSCARB2-transgenic mice results in a decrease in brainstem encephalitis and viral load. Conversely, induced hyperglycemia exacerbates neuropathogenesis, highlighting the pivotal role of hyperglycemia in neurovirulence. Notably, miR-206 emerges as a crucial mediator induced by viral infection, with its expression further heightened by hyperglycemia and concurrently repressed by insulin. The use of antagomiR-206 effectively mitigates EV71-induced brainstem encephalitis and reduces viral load. Mechanistically, miR-206 facilitates IRES-driven virus replication by repressing the stress granule protein G3BP2. Conclusions: Novel therapeutic approaches against severe EV71 infections involve managing hyperglycemia and targeting the miR-206-stress granule pathway to modulate virus IRES activity.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Hiperglicemia , Sítios Internos de Entrada Ribossomal , Camundongos Transgênicos , MicroRNAs , Replicação Viral , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Enterovirus Humano A/fisiologia , Enterovirus Humano A/genética , Hiperglicemia/metabolismo , Hiperglicemia/virologia , Camundongos , Infecções por Enterovirus/virologia , Infecções por Enterovirus/metabolismo , Humanos , Carga Viral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Insulina/metabolismo , Modelos Animais de Doenças
2.
J Microbiol Immunol Infect ; 56(6): 1121-1128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919172

RESUMO

BACKGROUND: Vaccine stability is an important issue for vaccine development, which affects whether the vaccine product is effective within a certain period of time in each progress. Hand, foot, and mouth diseases (HFMD) is an epidemic disease in young children usually caused by Enterovirus A group viruses, and the Enterovirus A71 (EV-A71) had caused several pandemics and public health issues around the world. After two decades of research and development, formalin-inactivated EV-A71 (FI-EV-A71) vaccines are the first to complete the phase III clinical trials for protection against EV-A71 infection. Currently, the shelf life of FI-EV-A71 vaccine product is set to be within 18 months, but the stability and the effectiveness of the FI-EV-A71 whole virion when stored long-term at low temperature remains undetermined. METHODS: Assessing the long-term storage properties of viral particles facilitates flexibility in manufacturing of vaccine products. In this study, the stability profiles of FI-EV-A71 vaccine lots and bulks after long-term of low temperature storage were analyzed by protein tests, particle measurement and animal immunization study. RESULTS: After over ten years of storage, the reduction of protein concentration in the FI-EV-A71 bulk samples is less than 30 % and the antigenic content remained in a suspended, particulate state. Both the packed FI-EV-A71 final vaccine products and the FI-EV-A71 antigens adjuvant premix bulk could elicit strong neutralizing responses in mice. CONCLUSION: After ten years of low temperature storage, the FI-EV-A71 vaccine still presents decent stability and good immunogenicity.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Vacinas Virais , Criança , Humanos , Animais , Camundongos , Pré-Escolar , Vacinas de Produtos Inativados , Temperatura , Infecções por Enterovirus/prevenção & controle , Antígenos Virais , Vírion
3.
Viruses ; 15(4)2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37112912

RESUMO

Coxsackievirus A10 (CVA10) causes hand, foot, and mouth disease (HFMD) and herpangina, which can result in severe neurological symptoms in children. CVA10 does not use the common enterovirus 71 (EV71) receptor, human SCARB2 (hSCARB2, scavenger receptor class B, member 2), for infection but instead uses another receptor, such as KREMEN1. Our research has shown that CVA10 can infect and replicate in mouse cells expressing human SCARB2 (3T3-SCARB2) but not in the parental NIH3T3 cells, which do not express hSCARB2 for CVA10 entry. Knocking down endogenous hSCARB2 and KREMEN1 with specific siRNAs inhibited CVA10 infection in human cells. Co-immunoprecipitation confirmed that VP1, a main capsid protein where virus receptors for attaching to the host cells, could physically interact with hSCARB2 and KREMEN1 during CVA10 infection. It is the efficient virus replication following virus attachment to its cellular receptor. It resulted in severe limb paralysis and a high mortality rate in 12-day-old transgenic mice challenged with CVA10 but not in wild-type mice of the same age. Massive amounts of CVA10 accumulated in the muscles, spinal cords, and brains of the transgenic mice. Formalin inactivated CVA10 vaccine-induced protective immunity against lethal CVA10 challenge and reduced the severity of disease and tissue viral loads. This is the first report to show that hSCARB2 serves as an associate to aid CVA10 infection. hSCARB2-transgenic mice could be useful in evaluating anti-CVA10 medications and studying the pathogenesis induced by CVA10.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Criança , Humanos , Camundongos , Animais , Células NIH 3T3 , Camundongos Transgênicos , Receptores Depuradores/genética , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo
4.
Virus Res ; 329: 199101, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36958398

RESUMO

Coxsackievirus A10 (CVA10) is one of enteroviral pathogens that cause the hand, foot, and mouth disease (HFMD). Since CVA10 was reported to be not easily propagated in the Vero cell culture, a feasible manufacture process for producing formalin-inactivated CVA10 vaccine is urgently needed. Several cell lines that commonly used for viral vaccine production was tested for CVA10 (M2014 strain) culture in this study, and our result showed that CVA10 could be easily propagated in the HEK293A cells. A serum-free HEK293A cell culture system was developed for CVA10 production and the yields have reached over 108 TCID50/mL. The biochemical and immunogenic properties of CVA10 particles obtained from this serum-free HEK293A culture were identical to our previous study. Two major particles of CVA10 were separated by ultracentrifugation, and only the infectious mature particles were capable of inducing CVA10 neutralizing antibody responses in the mouse immunogenicity studies. Additionally, we found that coxsackievirus A6 and enterovirus A71 could also be easily propagated using this serum-free HEK293A cell culture system. Our results provide a solution to overcome the obstacle in the propagation of CVA10 and facilitate the development of multivalent vaccines for prevention of HFMD.


Assuntos
Enterovirus Humano A , Enterovirus , Doença de Mão, Pé e Boca , Animais , Camundongos , Doença de Mão, Pé e Boca/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas de Produtos Inativados , Enterovirus Humano A/genética
5.
J Chromatogr A ; 1680: 463427, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36029731

RESUMO

Virions produced from cell culture is the primary source for production of formalin-inactivated whole virus vaccines for enteroviruses. EV-A71 particles produced from culture system comprise two major types, the immature/empty (E)-particle and the mature/full (F)-particle, which both exhibit low isoelectric point (pI) values but have distinct differences in infectivity and immunogenicity. Although EV-A71 particles can conventionally be separated into E-particle and F-particle using sucrose gradient ultracentrifugation, this procedure is cumbersome and difficult to put into practice for vaccine production. Methods based on ion-exchange chromatography have been exploited to improve the purification efficacy; however, none of them are capable of separating the E- and F-particles efficiently. In this study, we aimed to develop an approach to isolate and purify the highly immunogenic mature EV-A71 particles. By applying a step gradient elution procedure, we successfully isolated the viral structure protein VP0-cleaved particles of EV-A71 from a mixture of cultured viral solution using the Q-membrane anion-exchange chromatography. The elution started with 0.1x phosphate buffered saline (PBS) solution while increasing the percentage of 1x PBS containing 1M NaCl in sequential steps. By this procedure, the VP0-cleaved mature particles and VP0-uncleaved immature particles of EV-A71 could be separated into different fractions in Q-membrane with gradually increased NaCl concentration in elution buffer. The purified VP0-cleaved particles were shown to have characteristics equivalent to those of the highly infectious F-particles of EV-A71. The overall recovery rate for the mature EV-A71 particles by Q-membrane is 56% and its purity was shown to be equivalent to those isolated by the sucrose gradient ultracentrifugation. Our approach provides a simple and efficient purification method for recovering mature, highly infectious virus particles from the EV-A71 culture bulk.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Ânions , Antígenos Virais , Infecções por Enterovirus/prevenção & controle , Humanos , Cloreto de Sódio , Sacarose
6.
EMBO Mol Med ; 14(9): e15904, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35894122

RESUMO

ACE2 on epithelial cells is the SARS-CoV-2 entry receptor. Single-cell RNA-sequencing data derived from two COVID-19 cohorts revealed that MAP4K3/GLK-positive epithelial cells were increased in patients. SARS-CoV-2-induced GLK overexpression in epithelial cells was correlated with COVID-19 severity and vesicle secretion. GLK overexpression induced the epithelial cell-derived exosomes containing ACE2; the GLK-induced exosomes transported ACE2 proteins to recipient cells, facilitating pseudovirus infection. Consistently, ACE2 proteins were increased in the serum exosomes from another COVID-19 cohort. Remarkably, SARS-CoV-2 spike protein-stimulated GLK, and GLK stabilized ACE2 in epithelial cells. Mechanistically, GLK phosphorylated ACE2 at two serine residues (Ser776, Ser783), leading to the dissociation of ACE2 from its E3 ligase UBR4. Reduction in UBR4-induced Lys48-linked ubiquitination at three lysine residues (Lys26, Lys112, Lys114) of ACE2 prevented its degradation. Furthermore, SARS-CoV-2 pseudovirus or live virus infection in humanized ACE2 mice induced GLK and ACE2 protein levels, and ACE2-containing exosomes. Collectively, ACE2 stabilization by SARS-CoV-2-induced MAP4K3/GLK may contribute to the pathogenesis of COVID-19.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Animais , Humanos , Camundongos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
7.
Cell Death Dis ; 13(4): 328, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35399111

RESUMO

Brainstem encephalitis, a manifestation of severe enterovirus 71 (EV71) infection, is an acute excessive inflammatory response. The mechanisms underlying its development remain poorly understood. Usually neurotropic viruses trigger acute host immune response by engaging cell surface or intracellular receptors. Here, we show that EV71 engagement with intracellular receptor TLR9 elicits IL-12p40-iNOS signaling causing encephalitis in mice. We identified IL-12p40 to be the only prominent cytokine-induced at the early infection stage in the brainstem of mice subjected to a lethal dose of EV71. The upregulated IL-12p40 proteins were expressed in glial cells but not neuronal cells. To better understand the role of IL-12p40 in severe EV71 infection, we treated the EV71-infected mice with an antibody against IL-12p40 and found the mortality rate, brainstem inflammation, and gliosis to be markedly reduced, suggesting that the acute IL-12p40 response plays a critical role in the pathogenesis of brainstem encephalitis. Mechanistically, intracellular TLR9 was found essential to the activation of the IL-12p40 response. Blocking TLR9 signaling with CpG-ODN antagonist ameliorated IL-12p40 response, brainstem inflammation, and limb paralysis in mice with EV71-induced encephalitis. We further found the glial IL-12p40 response might damage neurons by inducing excess production of neurotoxic NO by iNOS. Overall, EV71 engagement with intracellular TLR9 was found to elicit a neurotoxic glial response via IL12p40-iNOS signaling contributing to the neurological manifestation of EV71 infection. This pathway could potentially be targeted for the treatment of brainstem encephalitis.


Assuntos
Encefalite , Enterovirus Humano A , Infecções por Enterovirus , Subunidade p40 da Interleucina-12 , Receptor Toll-Like 9 , Animais , Encefalite/imunologia , Encefalite/virologia , Infecções por Enterovirus/imunologia , Inflamação , Subunidade p40 da Interleucina-12/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Receptor Toll-Like 9/metabolismo
8.
Vaccine ; 40(4): 574-586, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34952759

RESUMO

A series of recombinant human type 5 adenoviruses that express the full-length or membrane-truncated spike protein (S) of SARS-CoV-2 (AdCoV2-S or AdCoV2-SdTM, respectively) was tested the efficacy against SARS-CoV-2 via intranasal (i.n.) or subcutaneous (s.c.) immunization in a rodent model. Mucosal delivery of adenovirus (Ad) vaccines could induce anti-SARS-CoV-2 IgG and IgA in the serum and in the mucosal, respectively as indicated by vaginal wash (vw) and bronchoalveolar lavage fluid (BALF). Serum anti-SARS-CoV-2 IgG but not IgA in the vw and BALF was induced by AdCoV2-S s.c.. Administration of AdCoV2-S i.n. was able to induce higher anti-SARS-CoV-2 binding and neutralizing antibody levels than s.c. injection. AdCoV2-SdTM i.n. induced a lower antibody responses than AdCoV2-S i.n.. Induced anti-S antibody responses by AdCoV2-S via i.n. or s.c. were not influenced by the pre-existing serum anti-Ad antibody. Novelty, S-specific IgG1 which represented Th2-mediated humoral response was dominantly induced in Ad i.n.-immunized serum in contrast to more IgG2a which represented Th1-mediated cellular response found in Ad s.c.-immunized serum. The activation of S-specific IFN-É£ and IL-4 in splenic Th1 and Th2 cells, respectively, was observed in the AdCoV2-S i.n. and s.c. groups, indicating the Th1 and Th2 immunity were activated. AdCoV2-S and AdCoV2-SdTM significantly prevented body weight loss and reduced pulmonary viral loads in hamsters. A reduction in inflammation in the lungs was observed in AdCoV-S via i.n. or s.c.-immunized hamsters following a SARS-CoV-2 challenge. It correlated to Th1 cytokine but no inflammatory cytokines secretions found in AdCoV-S i.n. -immunized BALF. These results indicate that intranasal delivery of AdCoV2-S vaccines is safe and potent at preventing SARS-CoV-2 infections.


Assuntos
Vacinas contra Adenovirus , COVID-19 , Animais , Anticorpos Antivirais , Vacinas contra COVID-19 , Cricetinae , Feminino , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
9.
PLoS One ; 14(1): e0210553, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30650163

RESUMO

Enterovirus 71 (EV71) has emerged as a neurological virus causing life-threatening diseases in young children and infants. Although EV71 vaccines in development have presented promising results in several clinical trials, the identified key antigen for improving the broad protective efficacy of EV71 vaccines has not been well investigated. In this report, we show that different multiplicities of infection (MOIs) of the B4(E59) virus significantly affect EV71 vaccine production in a serum-free microcarrier bioreactor system. The antigens produced from high MOIs of 10-1 and 10-2 exhibited higher yield and more infectious full particle (FP) contents in the EV71 vaccines than those produced with low MOIs of 10-4 and 10-6, leading to better cross-neutralizing efficacy. The C4(E36) neutralization results showed that only antisera raised from EV71 FPs provided substantial neutralizing titers against C4(E36), whereas empty particles (EPs) of EV71 conferred no efficacy. Competitive ELISA showed that anti-FP mainly binds to FPs and that 20% of antibodies bind to EPs, whereas most anti-EP binds EPs, with only 10% antibodies binding to FPs. VP1-adsorbed anti-FP lost most of the virus neutralization efficiency, suggesting that the VP1 subunit of FP is the major immunogenic antigen determining the ability of the EV71 vaccine to elicit cross-neutralizing antibodies against EV71 virus subtypes. These findings demonstrate that the high-MOI production approach is significantly correlated with FP productivity, thereby improving the cross-neutralization efficacy of an EV71 vaccine and providing the basis for a better vaccine design against widespread EV71 viruses.


Assuntos
Anticorpos Neutralizantes/biossíntese , Enterovirus/genética , Enterovirus/imunologia , Vírion/imunologia , Animais , Especificidade de Anticorpos , Chlorocebus aethiops , Enterovirus/ultraestrutura , Genótipo , Humanos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Células Vero , Vacinas Virais/imunologia , Vírion/ultraestrutura
10.
Front Pharmacol ; 9: 778, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087612

RESUMO

Lung cancer is one of the major cause of cancer-related deaths worldwide. The poor prognosis and resistance to both radiation and chemotherapy urged the development of potential targets for lung cancer treatment. In this study, using a network-based cellular signature bioinformatics approach, we repurposed a clinically approved mTOR inhibitor for renal cell carcinomans, temsirolimus, as the potential therapeutic candidate for lung adenocarcinoma. The PI3K-AKT-mTOR pathway is known as one of the most frequently dysregulated pathway in cancers, including non-small-cell lung cancer. By using a well-documented lung adenocarcinoma mouse model of human pathophysiology, we examined the effect of temsirolimus on the growth of lung adenocarcinoma in vitro and in vivo. In addition, temsirolimus combined with reduced doses of cisplatin and gemcitabine significantly inhibited the lung tumor growth in the lung adenocarcinoma mouse model compared with the temsirolimus alone or the conventional cisplatin-gemcitabine combination. Functional imaging techniques and microscopic analyses were used to reveal the response mechanisms. Extensive immunohistochemical analyses were used to demonstrate the apparent effects of combined treatments on tumor architecture, vasculature, apoptosis, and the mTOR-pathway. The present findings urge the further exploration of temsirolimus in combination with chemotherapy for treating lung adenocarcinoma.

11.
Virology ; 521: 181-189, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29960921

RESUMO

We evaluated the efficacy of a recombinant adenovirus that expresses a membrane-truncated respiratory syncytial virus (RSV) fusion protein (Ad-F0ΔTM) in newborns via maternal immunization (MI) of pregnant cotton rats. Intranasal Ad-F0ΔTM immunization was given to pregnant female rats, and MI-newborn rats were then challenged intranasally with RSV. Anti-RSV IgGs were observed in the serum of MI-newborn rats after birth. The pulmonary viral loads in Ad-F0ΔTM vs. control vector, Ad-LacZ, and MI-newborns on day 3 post-challenge were reduced by 4 log10/g lung. The neutralizing antibody remained for up to 3 weeks in the serum of MI-newborns, which is when weaning began. Ad-F0ΔTM protected MI-newborns from RSV challenge for 1 week. Vertical-transferred protective antibodies were examined in the breast milk and placenta as well. Finally, anti-RSV immunity was not boosted but was only primed during the next RSV exposure in Ad-F0ΔTM-MI-newborns. Maternal Ad-F0ΔTM immunization provides acute protection against RSV infection in neonates.


Assuntos
Anticorpos Antivirais/sangue , Portadores de Fármacos/administração & dosagem , Imunidade Materno-Adquirida , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vacinação/métodos , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Anticorpos Neutralizantes/sangue , Feminino , Vetores Genéticos , Pulmão/virologia , Leite Humano/imunologia , Placenta/imunologia , Gravidez , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sinciciais Respiratórios/imunologia , Sigmodontinae , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Carga Viral
12.
Sci Rep ; 8(1): 10713, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013088

RESUMO

Enterovirus 71 (EV71) is an aetiological agent responsible for seasonal epidemics of hand-foot-and-mouth disease, which causes considerable mortality among young children. Mucosal vaccines can efficiently induce secretory IgA at mucosal surfaces and thereby prevent or limit infection at the site of virus entry. CpG oligodeoxynucleotides (ODNs), which resemble bacterial DNA, can induce the innate immune response through activation of Toll-like receptor 9. Here, we used CpG ODNs as adjuvants to investigate an EV71 mucosal vaccine in mice. In the EV71 + CpG group, the EV71-specific IgG and IgA titres in the serum, nasal wash, bronchoalveolar lavage fluid, and faeces were substantially higher than those in the EV71- and phosphate-buffered saline-treated groups. Moreover, the number of EV71-specific IgG- and IgA-producing cells was also higher in the EV71 + CpG group. Furthermore, T-cell proliferative responses and interleukin-17 secretion were markedly increased when CpG-adjuvanted EV71 was delivered intranasally. More importantly, the induced antibodies neutralised infection by EV71 of the C2 genotype and crossneutralised infection by EV71 of the B4 and B5 genotypes. Lastly, human scavenger receptor class B, member 2-transgenic mice intranasally immunised with the CpG-adjuvanted EV71 vaccine resisted a subsequent lethal challenge with EV71, indicating that CpG was an effective intranasal adjuvant for EV71 mucosal-vaccine development.


Assuntos
Anticorpos Antivirais/sangue , Enterovirus Humano A/imunologia , Doença de Mão, Pé e Boca/prevenção & controle , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Animais , Anticorpos Antivirais/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Enterovirus Humano A/patogenicidade , Feminino , Doença de Mão, Pé e Boca/sangue , Doença de Mão, Pé e Boca/imunologia , Doença de Mão, Pé e Boca/virologia , Humanos , Imunidade nas Mucosas , Imunogenicidade da Vacina , Proteínas de Membrana Lisossomal/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Receptores Depuradores/genética , Resultado do Tratamento , Vacinas de Produtos Inativados , Vacinas Virais/administração & dosagem
13.
Sci Rep ; 8(1): 8744, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867107

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

14.
Sci Rep ; 8(1): 6688, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703921

RESUMO

Enterovirus 71 (EV71) is a major cause of hand, foot and mouth disease (HFMD). The current EV71 propagating in Vero (EV-V) or sub-passaged in RD (EV-R) cells was used as a pathogen. Interestingly, EV-R exhibited differential virulence; challenging human scavenger receptor class B2-expressing (hSCARB2-Tg) mice with EV71 revealed that EV-V was more virulent than EV-R: 100% of mice that received lethal amounts of EV-V died, while all the mice that received EV-R survived. Severe pathogenesis correlated with viral burdens and proinflammatory cytokine levels were observed in EV-V-challenged mice, but controversy in EV-R-challenged mice. Consensus sequence analysis revealed EV-R rapidly acquired complete mutations at E145G and S241L and partial mutations at V146I of VP1, and acquired a T to C substitution at nucleotide 494 of the 5'-UTR. EV-R exhibited higher binding affinity for another EV71 receptor, human P-selectin glycoprotein ligand-1 (hPSGL-1), than EV-V. Both EV71s exhibited no significant difference in binding to hSCARB2. The molecular modelling indicate that these mutations might influence EV71 engagement with PSGL-1 and in vivo virulence.


Assuntos
Regiões 5' não Traduzidas , Enterovirus Humano A/crescimento & desenvolvimento , Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/patologia , Glicoproteínas de Membrana/metabolismo , Mutação , Proteínas Estruturais Virais/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Citocinas/sangue , Análise Mutacional de DNA , Modelos Animais de Doenças , Infecções por Enterovirus/virologia , Humanos , Camundongos , Receptores Virais/metabolismo , Análise de Sobrevida , Carga Viral , Proteínas Virais , Proteínas Estruturais Virais/metabolismo , Virulência , Ligação Viral
15.
Vaccine ; 36(22): 3134-3139, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28274636

RESUMO

Hand, foot and mouth diseases (HFMD) are mainly caused by Enterovirus A71 (EV-A71) infections. Clinical trials in Asia conducted with formalin-inactivated EV-A71 vaccine candidates produced from serum-free Vero cell culture using either roller bottle or cell factory technology, are found to be safe and highly efficacious. To increase vaccine yields and reduce the production costs, the bioprocess improvement for EV-A71 vaccine manufacturing is currently being investigated. The parameters that could affect and enhance the production yields of EV-A71 virus growth in the microcarrier bioreactor were investigated. The medium replacement culture strategy included a multi-harvested semi-batch process and perfusion technology and was found to increase the production yields more than 7-14 folds. Based on the western blot and cryo-EM analyses of the EV-A71 virus particles produced from either the multi-harvested semi-batch (MHSBC) or perfusion cultures were found to be similar to those virus particles obtained from the single batch culture. Mouse immunogenicity studies indicate that the EV-A71 vaccine candidates produced from the perfusion culture have similar potency to those obtained from single batch bioprocess. The physical structures of the EV-A71 particles revealed by the cryo-EM analysis were found to be spherical capsid particles. These results provide feasible technical bioprocesses for increasing virus yields and the scale up of EV-A71 vaccine manufacturing using the bioreactor cell culture methods.


Assuntos
Reatores Biológicos/virologia , Técnicas de Cultura de Células/métodos , Enterovirus Humano A/crescimento & desenvolvimento , Vacinas Virais/biossíntese , Cultura de Vírus/métodos , Animais , Técnicas de Cultura Celular por Lotes , Chlorocebus aethiops , Imunogenicidade da Vacina , Camundongos , Testes de Neutralização , Vacinas de Produtos Inativados/biossíntese , Células Vero
16.
PLoS One ; 12(4): e0175586, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28419107

RESUMO

Developing lung cancer in mouse models that display similarities of both phenotype and genotype will undoubtedly provide further and better insights into lung tumor biology. Moreover, a high degree of pathophysiological similarity between lung tumors from mouse models and their human counterparts will make it possible to use these mouse models for preclinical tests. Ovine pulmonary adenocarcinomas (OPAs) present the same symptoms as adenocarcinomas in humans and are caused by a betaretrovirus. OPAs have served as an exquisite model of carcinogenesis for human lung adenocarcinomas. In this study, we characterized the histopathology and transcriptome profiles of a jaagsiekte sheep retrovirus (JSRV)-envelope protein (Env) transgenic mouse model with spontaneous lung tumors, and associations of the transcriptome profiles with tumor invasion/metastasis, especially the phenomenon of the epithelial-mesenchymal transition (EMT). Genetic information obtained from an expression array was analyzed using an ingenuity pathways analysis (IPA) and human disease database (MalaCards). By careful examination, several novel EMT-related genes were identified from tumor cells using RT-qPCR, and these genes also scored high in MalaCards. We concluded that the JSRV-Env mouse model could serve as a spontaneous lung adenocarcinoma model with a metastatic phenotype, which will benefit the study of early-onset and progression of lung adenocarcinoma. In addition, it can also be a valuable tool for biomarkers and drug screening, which will be helpful in developing intervention therapies.


Assuntos
Adenocarcinoma/patologia , Modelos Animais de Doenças , Neoplasias Pulmonares/patologia , Pulmão/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Retrovirus Jaagsiekte de Ovinos/genética , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos Transgênicos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/análise , Metástase Neoplásica , Proteínas Nucleares/análise , Fenótipo , Adenomatose Pulmonar Ovina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ovinos , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/análise , Proteínas do Envelope Viral/genética
17.
Antiviral Res ; 132: 225-32, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27387826

RESUMO

Enterovirus A71 (EV-A71) is responsible for epidemics of hand, foot and mouth disease (HFMD) in young children. To circumvent difficulties in obtaining clinical enterovirus isolates that might be contaminated with other viruses, a platform technology was developed to quickly generate vaccine virus strains based on the published enterovirus genomic sequences. A recombinant plasmid containing the full-length infectious cDNA clone of EV-A71 vaccine strain E59 was directly generated after transfecting the recombinant plasmid into Vero, RD or HEK293A cells, and phenotypic characteristics similar to the parental strain were observed. The cDNA-derived infectious EV-A71 virus grown in Vero cells produced relatively stable virus titers in both T-flasks and microcarrier culture systems. To evaluate the genetic stability of the cDNA-derived EV-A71 viruses, the immunodominant structural proteins, VP1 and VP2, of the recombinant EV-A71 viruses were sequenced and analyzed. The cDNA-derived EV-A71 virus showed weak pathogenicity in a human SCARB2 mouse model. These results show the successful generation of a recombinant virus derived from a published viral genomic sequence that demonstrated good genetic stability and viral yields, which could represent an efficient and safe vaccine strain for cGMP-grade manufacturing.


Assuntos
DNA Complementar , Enterovirus Humano A/genética , Enterovirus Humano A/imunologia , Infecções por Enterovirus/imunologia , Genoma Viral , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Substituição de Aminoácidos , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Chlorocebus aethiops , Modelos Animais de Doenças , Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/prevenção & controle , Infecções por Enterovirus/virologia , Ordem dos Genes , Instabilidade Genômica , Humanos , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Camundongos , Camundongos Transgênicos , Mutação , Células Vero , Replicação Viral
18.
Antiviral Res ; 130: 27-35, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001351

RESUMO

We have developed an efficient cell culture process to scale up the production of a recombinant adenovirus that expresses the membrane-trunked fusion protein of respiratory syncytial virus (RSV; Ad-F0ΔTM). Adherent cells of human embryonic kidney (HEK) 293-derived cell, 293A, which supports the production of E1/E3-deleted Ad-F0ΔTM when cultured in the presence of fetal bovine serum (FBS), were adapted to suspension growth under serum-free medium. In doing so, we studied the immunogenicity of Ad-F0ΔTMsus, which propagated in a bioreactor that was cultured with serum-free suspension of 293A, in comparison with Ad-F0ΔTMadh, which was produced from parental 293A cells that were adherently cultured in medium containing FBS. The size and morphology of Ad-F0ΔTMsus and Ad-F0ΔTMadh virions were identical upon inspection with electron microscopy. The results showed that anti-F IgG and RSV-neutralizing titer were raised in the serum of both mice that were intranasally immunized twice with Ad-F0ΔTMsus or Ad-F0ΔTMadh at two-week injection intervals. Furthermore, the immune responses persisted for six months after vaccination. Activation of F protein-specific CD8(+) T cell's epitope associated IFN-É£ and IL-4 was induced in both Ad-F0ΔTMsus- and Ad-F0ΔTMadh, but not in Ad-LacZsus, -immunized mouse splenocytes. No vaccine-enhanced lung inflammation, airway mucus occlusion or eosinophils infiltration were observed in Ad-immunized mice followed by RSV challenge; however, these symptoms were observed following immunization with formalin-inactivated RSV vaccine. These results indicate that the safety and potency of Ad-F0ΔTM produced from either adherent cells or suspension and serum-free cells are the same.


Assuntos
Adenoviridae/genética , Vetores Genéticos/genética , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/imunologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia , Adenoviridae/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Técnicas de Cultura de Células , Linhagem Celular , Meios de Cultura Livres de Soro , Modelos Animais de Doenças , Expressão Gênica , Vetores Genéticos/imunologia , Células HEK293 , Humanos , Imunização Secundária , Camundongos , Testes de Neutralização , Ratos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas de Produtos Inativados/imunologia
19.
Antiviral Res ; 129: 58-66, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26899790

RESUMO

Childhood exanthema caused by different serotypes of coxsackievirus (CV-A) and enterovirus A71 (EV-A71) has become a serious global health problem; it is commonly known as hand, foot, and mouth disease (HFMD). Current EV-A71 vaccine clinical trials have demonstrated that human antibody responses generated by EV-A71 vaccinations do not cross-neutralize coxsackievirus A16 (CV-A16). An effective multivalent HFMD vaccine is urgently needed. From molecular epidemiological studies in Southeast Asia, CV-A6 and CV-A10 are commonly found in HFMD outbreaks. In this study, CV-A6 and CV-A10 were individually cultured in rhabdomyosarcoma (RD) cells grown in medium containing serum, harvested and concentrated. In viral downstream purification, two viral fractions were separated by sucrose gradient zonal ultracentrifugation and detected using a SDS-PAGE analysis and a virus infectivity assay. These two viral fractions were formalin-inactivated, and only the infectious particle fraction was found to be capable of inducing CV-A serotype-specific neutralizing antibody responses in animal immunogenicity studies. These mouse and rabbit antisera also failed to cross-neutralize EV-A71 and CV-A16 infections. Only a combination of formalin-inactivated EV-A71, CV-A6, CV-A10 and CV-A16 multivalent vaccine candidates elicited cross-neutralizing antibody responses in both mouse and rabbit immunogenicity studies. The current results certainly provide important information for multivalent HFMD vaccine development.


Assuntos
Anticorpos Antivirais/imunologia , Enterovirus Humano A/imunologia , Vacinas Virais/imunologia , Vírion/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/sangue , Antígenos Virais/química , Antígenos Virais/imunologia , Reações Cruzadas , Enterovirus Humano A/química , Enterovirus Humano A/isolamento & purificação , Enterovirus Humano A/ultraestrutura , Infecções por Enterovirus/imunologia , Genótipo , Doença de Mão, Pé e Boca/imunologia , Doença de Mão, Pé e Boca/virologia , Camundongos , Coelhos , Alinhamento de Sequência , Vacinação , Vacinas de Produtos Inativados/imunologia , Tropismo Viral , Vírion/química , Vírion/isolamento & purificação
20.
Mol Neurobiol ; 53(6): 3658-3669, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26111627

RESUMO

This study determined if dietary restriction (DR) protects against hypoxic-ischemia (HI) in the neonatal brain via insulin receptor substrate-1 (IRS-1)/Akt pathway-mediated downregulation of p53 in the neurovascular unit. On postnatal (P) day 7, HI was induced in rat pups grouped from P1 into normal litter size (NL, 12 pups/dam) and increased litter size (DR, 18 pups/dam). In vivo IRS-1 anti-sense oligonucleotide and IRS-1 overexpressed recombinant adenovirus were given, and neurovascular damage was assessed. In vitro models of oxygen-glucose deprivation (OGD) examined the inhibition and overexpression of IRS-1 on p53 and cell death in neurons and endothelial cells. Compared to NL pups, DR pups had significantly higher IRS-1, p-IRS-1, and pAkt levels, decreased p53, more tight junction proteins, reduced blood-brain barrier (BBB) damage after HI, and less infarct volumes at P21. Immunofluorescence revealed that IRS-1 was upregulated in the endothelial cells and neurons of DR pups. IRS-1 downregulation in DR pups reduced p-Akt, increased p53, worsened BBB damage, and increased brain injury, whereas IRS-1 overexpression in NL pups upregulated p-Akt, decreased p53, attenuated BBB damage, and decreased brain injury. In vitro, IRS-1 downregulation aggravated cell death in neurons and endothelial cells and is associated with decreased p-Akt and increased p53. In contrast, IRS-1 overexpression reduced cell death in endothelial cells with increased p-Akt and decreased p53. In conclusion, DR reduces neurovascular damage after HI in the neonatal brain through an IRS-1/Akt-mediated p53 downregulation, suggesting that IRS-1 signaling is a therapeutic target for hypoxic brain injury in neonates.


Assuntos
Regulação para Baixo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Restrição Calórica , Morte Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glucose/deficiência , Humanos , Hipóxia-Isquemia Encefálica/patologia , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Oligonucleotídeos Antissenso/farmacologia , Oxigênio , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteínas de Junções Íntimas/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...