Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(27): 18864-18877, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37350860

RESUMO

Lung inflammation and injuries are major health problems. The SPA4 peptide (amino acid sequence GDFRYSDGTPVNYTNWYRGE) binds to Toll-like receptor-4 and exerts anti-inflammatory activity. In this study, we have determined the stability of the structure and structure-activity relationship of the SPA4 peptide under ambient and stressed conditions of lung injury. The SPA4 peptide was maintained at different pH and temperatures, in solutions of different ionic strengths, and simulated lung fluids. The primary and secondary structure of the SPA4 peptide was determined by ultraviolet-visible (UV-VIS) and circular dichroism (CD) spectroscopy. The activity of the SPA4 peptide was determined by measurement of secreted levels of chemokine C-X-C motif ligand 1/keratinocyte-derived chemokine (CXCL1/KC) and lactate by primary mouse lung epithelial cells against lipopolysaccharide (LPS) stimuli. Our results demonstrate the stability of the structure of the SPA4 peptide at room temperature and 4 °C over 10 days. The original UV-VIS spectra of the SPA4 peptide followed a typical pattern when incubated in solutions of pH 5.7, 7.0, and 8.0 at different temperatures, simulated lung fluids, and most of the chemical components. Slight shifts in the absorbance peaks, derivative values, and vibrational fine structures were noted in the fourth-derivative spectra of the SPA4 peptide under some conditions. An increased level of lactate is the hallmark of lung injury. The SPA4 peptide on its own and in the presence of lactate exerts anti-inflammatory activity. The primary and secondary structure and the activity of the SPA4 peptide remain intact when pre-incubated in 2 mM sodium lactate solution. The results provide important insights about the stability and structure-activity relationship of the SPA4 peptide.

2.
Physiol Rep ; 10(13): e15353, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35838161

RESUMO

Disrupted epithelial barrier, fluid accumulation, inflammation, and compromised physiology are hallmarks of lung injury. Here we investigated the structural stability of the Toll-like receptor-4 (TLR4)-interacting SPA4 peptide, its effect on Pseudomonas aeruginosa lipopolysaccharide (LPS)-disrupted epithelial barrier in a human cell system, and lung injury markers in a mouse model of LPS-induced lung inflammation. The structural properties of SPA4 peptide were investigated using circular dichroism and UV-VIS spectroscopy. The transepithelial electrical resistance (TEER), an indicator of barrier function, was measured after the cells were challenged with 1 µg/ml LPS and treated with 10 or 100 µM SPA4 peptide. The expression and localization of tight junction proteins were studied by immunoblotting and immunocytochemistry, respectively. Mice were intratracheally challenged with 5 µg LPS per g body weight and treated with 50 µg SPA4 peptide. The lung wet/dry weight ratios or edema, surfactant protein-D (SP-D) levels in serum, lung function, tissue injury, body weights, and temperature, and survival were determined as study parameters. The spectroscopy results demonstrated that the structure was maintained among different batches of SPA4 peptide throughout the study. Treatment with 100 µM SPA4 peptide restored the LPS-disrupted epithelial barrier, which correlated with the localization pattern of Zonula Occludens (ZO)-1 and occludin proteins. Correspondingly, SPA4 peptide treatment helped suppress the lung edema and levels of serum SP-D, improved some of the lung function parameters, and reduced the mortality risk against LPS challenge. Our results suggest that the anti-inflammatory activity of the SPA4 peptide facilitates the resolution of lung pathology.


Assuntos
Lipopolissacarídeos , Lesão Pulmonar , Animais , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/toxicidade , Pulmão , Camundongos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Proteína D Associada a Surfactante Pulmonar
3.
Inflammation ; 45(6): 2142-2162, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35779195

RESUMO

Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.


Assuntos
Lesão Pulmonar , Junções Íntimas , Humanos , Junções Íntimas/metabolismo , Receptor 4 Toll-Like/metabolismo , Lesão Pulmonar/patologia , Células Epiteliais/metabolismo , Epitélio/metabolismo
4.
Immunohorizons ; 5(8): 659-674, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429343

RESUMO

The TLR4-interacting SPA4 peptide suppresses inflammation. We assessed the structural and physicochemical properties and binding of SPA4 peptide to TLR4-MD2. We also studied the changes at the whole transcriptome level, cell morphology, viability, secreted cytokines and chemokines, and cell influx in cell systems and mouse models challenged with LPS and treated with SPA4 peptide. Our results demonstrated that the SPA4 peptide did not alter the cell viability and size and only moderately affected the transcriptome of the cells. Computational docking and rendering suggested that the SPA4 peptide intercalates with LPS-induced TLR4-MD2 complex. Results with alanine mutations of D-2 amino acid and NYTXXXRG-12-19 motif of SPA4 peptide suggested their role in binding to TLR4 and in reducing the cytokine response against LPS stimulus. Furthermore, therapeutically administered SPA4 peptide significantly suppressed the secreted levels of cytokines and chemokines in cells and bronchoalveolar lavage fluids of LPS-challenged mice. The results suggest that the SPA4 peptide intercalates with LPS-induced TLR4 complex and signaling for the suppression of inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/prevenção & controle , Fragmentos de Peptídeos/farmacologia , Proteína A Associada a Surfactante Pulmonar/metabolismo , Receptor 4 Toll-Like/metabolismo , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Mutação , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Proteína A Associada a Surfactante Pulmonar/química , Proteína A Associada a Surfactante Pulmonar/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...