Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 40(9): 2239-2251, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37679656

RESUMO

PURPOSE: In vitro release testing (IVRT) is a widely used tool for evaluating the quality and performance of drug products. However, standardized sample adaptors or drug release apparatus setups for IVRT studies are still lacking for ophthalmic ointments. The aim of this study was to provide a better understanding of the impact of apparatus and sample adaptor setups on IVRT of ophthalmic ointments. METHODS: Dexamethasone (DEX), a steroidal ingredient commonly used in ophthalmic drug products, was selected as a model drug. Ointments were prepared by mixing DEX in white petrolatum using a high shear mixer. A novel two-sided adapter was developed to increase the drug release surface area. DEX ointment was placed in one-sided or two-sided release adaptors coupled with 1.2 µm polyethersulfone membrane, and the drug release was studied in different USP apparatuses (I, II, and IV). RESULTS: The sample adaptor setups had a minimal impact on cumulative drug release amount per area or release rate while USP IV apparatus with agitated flow enhanced drug release rates. The USP apparatus I with a two-sided semisolid adapter, which uses membranes on both sides, showed dramatically higher cumulative drug release and discriminative release profiles when evaluating ophthalmic formulations. CONCLUSIONS: USP apparatuses and sample adaptors are critical considerations for IVRT. Two-sided semisolid adapter provides higher cumulative release, facilitating the discrimination between low drug content ophthalmic ointment formulations with good sensitivity and repeatability without affecting the drug release rate.


Assuntos
Liberação Controlada de Fármacos , Pomadas , Composição de Medicamentos , Administração Oftálmica
2.
Nanotheranostics ; 7(4): 353-367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151801

RESUMO

Indocyanine green (ICG) is one of the FDA-approved near infra-red fluorescent (NIRF) probes for cancer imaging and image-guided surgery in the clinical setting. However, the limitations of ICG include poor photostability, high concentration toxicity, short circulation time, and poor cancer cell specificity. To overcome these hurdles, we engineered a nanoconstruct composed of poly (vinyl pyrrolidone) (PVP)-indocyanine green that is cloaked self-assembled with tannic acid (termed as indocyanine green-based glow nanoparticles probe, ICG-Glow NPs) for the cancer cell/tissue-specific targeting. The self-assembled ICG-Glow NPs were confirmed by spherical nanoparticles formation (DLS and TEM) and spectral analyses. The NIRF imaging characteristic of ICG-Glow NPs was established by superior fluorescence counts on filter paper and chicken tissue. The ICG-Glow NPs exhibited excellent hemo and cellular compatibility with human red blood cells, kidney normal, pancreatic normal, and other cancer cell lines. An enhanced cancer-specific NIRF binding and imaging capability of ICG-Glow NPs was confirmed using different human cancer cell lines and human tumor tissues. Additionally, tumor-specific binding/accumulation of ICG-Glow NPs was confirmed in MDA-MB-231 xenograft mouse model. Collectively, these findings suggest that ICG-Glow NPs have great potential as a novel and safe NIRF imaging probe for cancer cell/tumor imaging. This can lead to a quicker cancer diagnosis facilitating precise disease detection and management.


Assuntos
Neoplasias , Nanopartículas , Verde de Indocianina , Neoplasias/diagnóstico por imagem , Humanos , Linhagem Celular , Feminino , Animais , Camundongos
3.
ACS Appl Bio Mater ; 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976626

RESUMO

Breast cancer is one of the most commonly diagnosed cancers in American women. Triple negative breast cancer is among the most advanced and aggressive forms of breast cancer. Treatment options are limited for such cancers, making chemotherapy a convenient and effective treatment. Although these therapies can reduce morbidity and mortality, it is often followed by systemic side effects or relapse. Nanoparticles (NPs) have been considered for drug delivery approaches due to their ability to target various disease sites. Herein, we aim to develop a biomimetic NP construct (cell membrane-cloaked NPs) that exhibits specific affinity with triple negative breast cancer cells. In this regard, we designed biomimetic supramolecular nanoconstructs composed of a poly(vinyl pyrrolidone)-tannic acid (PVP-TA NPs/ PVT NPs) core and biofunctionalized with neutrophil cell membranes (PVT-NEU NPs). In this study, we have synthesized a PVT-NEU NP construct, characterized it, and evaluated it for improved targeting and therapeutic benefits in in vitro and in vivo models. Analysis of PVT-NEU NPs confirms the presence of the core of PVP-TA NPs coated with activated human neutrophil membranes. The study results confirmed that PVT-NEU NPs demonstrated an enhanced interaction and targeting with the tumor cells, thus improving the therapeutic activity of a model therapeutic agent (paclitaxel). Altogether, this study suggests the potential of biomimetic NPs as a promising therapeutic option for targeted drug delivery for advanced-stage breast cancer and other similar diseased conditions.

4.
JCI Insight ; 6(22)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34806647

RESUMO

Cisplatin is a commonly used chemotherapeutic agent to treat a wide array of cancers that is frequently associated with toxic injury to the kidney due to oxidative DNA damage and perturbations in cell cycle progression leading to cell death. In this study, we investigated whether thyroid receptor interacting protein 13 (TRIP13) plays a central role in the protection of the tubular epithelia following cisplatin treatment by circumventing DNA damage. Following cisplatin treatment, double-stranded DNA repair pathways were inhibited using selective blockers to proteins involved in either homologous recombination or non-homologous end joining. This led to increased blood markers of acute kidney injury (AKI) (creatinine and neutrophil gelatinase-associated lipocalin), tubular damage, activation of DNA damage marker (γ-H2AX), elevated appearance of G2/M blockade (phosphorylated histone H3 Ser10 and cyclin B1), and apoptosis (cleaved caspase-3). Conditional proximal tubule-expressing Trip13 mice were observed to be virtually protected from the cisplatin nephrotoxicity by restoring most of the pathological phenotypes back toward normal conditions. Our findings suggest that TRIP13 could circumvent DNA damage in the proximal tubules during cisplatin injury and that TRIP13 may constitute a new therapeutic target in protecting the kidney from nephrotoxicants and reduce outcomes leading to AKI.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Injúria Renal Aguda/induzido quimicamente , Proteínas de Ciclo Celular/metabolismo , Cisplatino/efeitos adversos , Dano ao DNA/genética , Reparo do DNA/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos
5.
Bioact Mater ; 6(10): 3269-3287, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33778204

RESUMO

The management of aggressive breast cancer, particularly, triple negative breast cancer (TNBC) remains a formidable challenge, despite treatment advancement. Although newer therapies such as atezolizumab, olaparib, and sacituzumab can tackle the breast cancer prognosis and/or progression, but achieved limited survival benefit(s). The current research efforts are aimed to develop and implement strategies for improved bioavailability, targetability, reduce systemic toxicity, and enhance therapeutic outcome of FDA-approved treatment regimen. This review presents various nanoparticle technology mediated delivery of chemotherapeutic agent(s) for breast cancer treatment. This article also documents novel strategies to employ cellular and cell membrane cloaked (biomimetic) nanoparticles for effective clinical translation. These technologies offer a safe and active targeting nanomedicine for effective management of breast cancer, especially TNBC.

6.
Viruses ; 12(5)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443728

RESUMO

Even with an efficient combination of antiretroviral therapy (ART), which significantly decreases viral load in human immunodeficiency virus type 1 (HIV-1)-positive individuals, the occurrence of HIV-1-associated neurocognitive disorders (HAND) still exists. Microglia have been shown to have a significant role in HIV-1 replication in the brain and in subsequent HAND pathogenesis. However, due to the limited ability of ART drugs to cross the blood-brain barrier (BBB) after systemic administration, in addition to efflux transporter expression on microglia, the efficacy of ART drugs for viral suppression in microglia is suboptimal. Previously, we developed novel poly (lactic-co-glycolic acid) (PLGA)-based elvitegravir nanoparticles (PLGA-EVG NPs), which showed improved BBB penetration in vitro and improved viral suppression in HIV-1-infected primary macrophages, after crossing an in vitro BBB model. Our objective in the current study was to evaluate the efficacy of our PLGA-EVG NPs in an important central nervous system (CNS) HIV-1 reservoir, i.e., microglia. In this study, we evaluated the cyto-compatibility of the PLGA-EVG NPs in microglia, using an XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) assay and cellular morphology observation. We also studied the endocytosis pathway and the subcellular localization of PLGA NPs in microglia, using various endocytosis inhibitors and subcellular localization markers. We determined the ability of PLGA-EVG NPs to suppress HIV-1 replication in microglia, after crossing an in vitro BBB model. We also studied the drug levels in mouse plasma and brain tissue, using immunodeficient NOD scid gamma (NSG) mice, and performed a pilot study, to evaluate the efficacy of PLGA-EVG NPs on viral suppression in the CNS, using an HIV-1 encephalitic (HIVE) mouse model. From our results, the PLGA-EVG NPs showed ~100% biocompatibility with microglia, as compared to control cells. The internalization of PLGA NPs in microglia occurred through caveolae-/clathrin-mediated endocytosis. PLGA NPs can also escape from endo-lysosomal compartments and deliver the therapeutics to cells efficiently. More importantly, the PLGA-EVG NPs were able to show ~25% more viral suppression in HIV-1-infected human-monocyte-derived microglia-like cells after crossing the in vitro BBB compared to the EVG native drug, without altering BBB integrity. PLGA-EVG NPs also showed a ~two-fold higher level in mouse brain and a trend of decreasing CNS HIV-1 viral load in HIV-1-infected mice. Overall, these results help us to create a safe and efficient drug delivery method to target HIV-1 reservoirs in the CNS, for potential clinical use.


Assuntos
Fármacos Anti-HIV/farmacologia , Antirretrovirais/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Inibidores de Integrase/farmacologia , Microglia/virologia , Replicação Viral/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Infecções por HIV/tratamento farmacológico , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Nanopartículas/química , Projetos Piloto , Plasma/virologia , Quinolonas/farmacologia , Carga Viral
7.
Pharmaceutics ; 12(3)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235765

RESUMO

Pancreatic cancer (PanCa) is a lethal disease. Conventional chemotherapies for PanCa offer severe systemic toxicities. Thus, the development of a successful nanomedicine-based therapeutic regimen with augmented therapeutic efficacy is highly sought. Naturally occurring pectin and modified pectin-based drug delivery systems exhibit remarkable self-targeting ability via galactose residues to various cancer cells. Herein, we developed and used an innovative approach of highly stable nanocomplexes based on modified pectin and tannic acid (MPT-NCs). The nanocomplex formation was enabled by strong intermolecular interactions between pectin and tannic acid under very mild conditions. These nanocomplexes were characterized by particle size and morphology (DLS, TEM, and SEM), FT-IR spectroscopy, and zeta potential measurements. Additionally, MPT-NCs were capable of encapsulating anticancer drugs (5-fluorouracil, gemcitabine, and irinotecan) through tannic acid binding. The in vitro bioactivity of these drug MPT-NCs were evaluated in pancreatic cancer adenocarcinoma (PDAC) cell lines (HPAF-II and PANC-1). A dose-dependent internalization of nanocomplexes was evident from microscopy and flow cytometry analysis. Both proliferation and colony formation assays indicated the anticancer potential of pectin drug nanocomplexes against PDAC cells compared to that of free drug treatments. Together, the pectin-based nanocomplexes could be a reliable and efficient drug delivery strategy for cancer therapy.

8.
Sci Rep ; 10(1): 3835, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123217

RESUMO

The use of antiretroviral therapy (ART) has remarkably decreased the morbidity associated with HIV-1 infection, however, the prevalence of HIV-1-associated neurocognitive disorders (HAND) is still increasing. The blood-brain barrier (BBB) is the major impediment for penetration of antiretroviral drugs, causing therapeutics to reach only suboptimal level to the brain. Conventional antiretroviral drug regimens are not sufficient to improve the treatment outcomes of HAND. In our recent report, we have developed a poloxamer-PLGA nanoformulation loaded with elvitegravir (EVG), a commonly used antiretroviral drug. The nanoformulated EVG is capable of elevating intracellular drug uptake and simultaneously enhance viral suppression in HIV-1-infected macrophages. In this work, we identified the clinical parameters including stability, biocompatibility, protein corona, cellular internalization pathway of EVG nanoformulation for its potential clinical translation. We further assessed the ability of this EVG nanoformulation to cross the in vitro BBB model and suppress the HIV-1 in macrophage cells. Compared with EVG native drug, our EVG nanoformulation demonstrated an improved BBB model penetration cross the in vitro BBB model and an enhanced HIV-1 suppression in HIV-1-infected human monocyte-derived macrophages after crossing the BBB model without altering the BBB model integrity. Overall, this is an innovative and optimized treatment strategy that has a potential for therapeutic interventions in reducing HAND.


Assuntos
Barreira Hematoencefálica/metabolismo , Composição de Medicamentos , HIV-1/efeitos dos fármacos , Macrófagos/virologia , Nanopartículas/química , Quinolonas/química , Quinolonas/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Humanos , Teste de Materiais , Tamanho da Partícula , Poloxâmero/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Quinolonas/metabolismo
9.
Sci Rep ; 10(1): 980, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969643

RESUMO

Prostate cancer (PCa) cells exploit the aberrant lipid signaling and metabolism as their survival advantage. Also, intracellular storage lipids act as fuel for the PCa proliferation. However, few studies were available that addressed the topic of targeting lipid metabolism in PCa. Here, we assessed the tannic acid (TA) lipid-targeting ability and its capability to induce endoplasmic reticulum (ER) stress by reactive oxygen species (ROS) in PCa cells. TA exhibited dual effects by inhibiting lipogenic signaling and suppression of lipid metabolic pathways. The expression of proteins responsible for lipogenesis was down regulated. The membrane permeability and functionality of PCa were severely affected and caused nuclear disorganization during drug exposure. Finally, these consolidated events shifted the cell's survival balance towards apoptosis. These results suggest that TA distinctly interferes with the lipid signaling and metabolism of PCa cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Taninos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Masculino , Próstata/efeitos dos fármacos , Próstata/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
ACS Appl Mater Interfaces ; 11(42): 38537-38554, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31553876

RESUMO

Cellular senescence is one of the prevailing issues in cancer therapeutics that promotes cancer relapse, chemoresistance, and recurrence. Patients undergoing persistent chemotherapy often develop drug-induced senescence. Docetaxel, an FDA-approved treatment for prostate cancer, is known to induce cellular senescence which often limits the overall survival of patients. Strategic therapies that counter the cellular and drug-induced senescence are an unmet clinical need. Towards this an effort was made to develop a novel therapeutic strategy that targets and removes senescent cells from the tumors, we developed a nanoformulation of tannic acid-docetaxel self-assemblies (DSAs). The construction of DSAs was confirmed through particle size measurements, spectroscopy, thermal, and biocompatibility studies. This formulation exhibited enhanced in vitro therapeutic activity in various biological functional assays with respect to native docetaxel treatments. Microarray and immunoblot analysis results demonstrated that DSAs exposure selectively deregulated senescence associated TGFßR1/FOXO1/p21 signaling. Decrease in ß-galactosidase staining further suggested reversion of drug-induced senescence after DSAs exposure. Additionally, DSAs induced profound cell death by activation of apoptotic signaling through bypassing senescence. Furthermore, in vivo and ex vivo imaging analysis demonstrated the tumor targeting behavior of DSAs in mice bearing PC-3 xenograft tumors. The antisenescence and anticancer activity of DSAs was further shown in vivo by inhibiting TGFßR1 proteins and regressing tumor growth through apoptotic induction in the PC-3 xenograft mouse model. Overall, DSAs exhibited such advanced features due to a natural compound in the formulation as a matrix/binder for docetaxel. Overall, DSAs showed superior tumor targeting and improved cellular internalization, promoting docetaxel efficacy. These findings may have great implications in prostate cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Senescência Celular/efeitos dos fármacos , Docetaxel/química , Nanoestruturas/química , Polifenóis/química , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Proteína Forkhead Box O1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacos , Taninos/química , Transplante Heterólogo
11.
Expert Opin Drug Deliv ; 16(8): 869-882, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31328582

RESUMO

Introduction: Antiretroviral therapy (ART) has led to a significant reduction in HIV-1 morbidity and mortality. Many antiretroviral drugs (ARVs) are metabolized by cytochrome P450 (CYP) pathway, and the majority of these drugs are also either CYP inhibitors or inducers and few possess both activities. These CYP substrates, when used for HIV treatment in the conventional dosage form, have limitations such as low systemic bioavailability, potential drug-drug interactions, and short half-lives. Thus, an alternative mode of delivery is needed in contrast to conventional ARVs. Areas covered: In this review, we summarized the limitations of conventional ARVs in HIV treatment, especially for ARVs which are CYP substrates. We also discussed the preclinical and clinical studies using the nanotechnology strategy to overcome the limitations of these CYP substrates. The preclinical studies and clinical studies published from 2000 to February 2019 were discussed. Expert opinion: Since preclinical and clinical studies for prevention and treatment of HIV using nanotechnology approaches have shown considerable promise in recent years, nanotechnology could become an alternative strategy for daily oral therapy as a future treatment.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Sistema Enzimático do Citocromo P-450/metabolismo , Infecções por HIV/tratamento farmacológico , Animais , Formas de Dosagem , Infecções por HIV/metabolismo , HIV-1 , Humanos , Nanotecnologia
12.
Expert Opin Drug Metab Toxicol ; 15(5): 417-427, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30951643

RESUMO

INTRODUCTION: Drugs used in HIV treatment; all protease inhibitors, some non-nucleoside reverse transcriptase inhibitors, and pharmacoenhancers ritonavir and cobicistat can inhibit cytochrome P450 (CYP) enzymes. CYP inhibition can cause clinically significant drug-drug interactions (DDI), leading to increased drug exposure and potential toxicity. Areas covered: A complete understanding of pharmacodynamics and CYP-mediated DDI is crucial to prevent adverse side effects and to achieve optimal efficacy. We summarized the pharmacodynamics of all the CYP inhibitors used for HIV treatment, followed by a discussion of drug interactions between these CYP inhibitors and other drugs, and a discussion on the effect of CYP polymorphisms. We also discussed the potential advancements in improving the pharmacodynamics of these CYP inhibitors by using nanotechnology strategy. Expert opinion: The drug-interactions in HIV patients receiving ARV drugs are complicated, especially when patients are on CYP inhibitors-based ART regimens. Therefore, evaluation of CYP-mediated drug interactions is necessary prior to prescribing ARV drugs to HIV subjects. To improve the treatment efficacy and minimize DDI, novel approaches such as nanotechnology may be the potential alternative approach. However, further studies with large cohort need to be conducted to provide strong evidence for the use of nano-formulated ARVs to effectively treat HIV patients.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Inibidores das Enzimas do Citocromo P-450/administração & dosagem , Infecções por HIV/tratamento farmacológico , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Interações Medicamentosas , Humanos
13.
J Exp Clin Cancer Res ; 38(1): 29, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674344

RESUMO

BACKGROUND: The management of pancreatic cancer (PanCa) is exceptionally difficult due to poor response to available therapeutic modalities. Tubulins play a major role in cell dynamics, thus are important molecular targets for cancer therapy. Among various tubulins, ßIII and ßIV-tubulin isoforms have been primarily implicated in PanCa progression, metastasis and chemo-resistance. However, specific inhibitors of these isoforms that have potent anti-cancer activity with low toxicity are not readily available. METHODS: We determined anti-cancer molecular mechanisms and therapeutic efficacy of a novel small molecule inhibitor (VERU-111) using in vitro (MTS, wound healing, Boyden chamber and real-time xCELLigence assays) and in vivo (xenograft studies) models of PanCa. The effects of VERU-111 treatment on the expression of ß-tubulin isoforms, apoptosis, cancer markers and microRNAs were determined by Western blot, immunohistochemistry (IHC), confocal microscopy, qRT-PCR and in situ hybridization (ISH) analyses. RESULTS: We have identified a novel small molecule inhibitor (VERU-111), which preferentially represses clinically important, ßIII and ßIV tubulin isoforms via restoring the expression of miR-200c. As a result, VERU-111 efficiently inhibited tumorigenic and metastatic characteristics of PanCa cells. VERU-111 arrested the cell cycle in the G2/M phase and induced apoptosis in PanCa cell lines via modulation of cell cycle regulatory (Cdc2, Cdc25c, and Cyclin B1) and apoptosis - associated (Bax, Bad, Bcl-2, and Bcl-xl) proteins. VERU-111 treatment also inhibited tumor growth (P < 0.01) in a PanCa xenograft mouse model. CONCLUSIONS: This study has identified an inhibitor of ßIII/ßIV tubulins, which appears to have excellent potential as monotherapy or in combination with conventional therapeutic regimens for PanCa treatment.


Assuntos
Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Moduladores de Tubulina/administração & dosagem , Tubulina (Proteína)/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Camundongos , Metástase Neoplásica , Paclitaxel/administração & dosagem , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Tubulina (Proteína)/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Colloid Interface Sci ; 535: 133-148, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30292104

RESUMO

Paclitaxel (PTX) is a gold standard chemotherapeutic agent for breast, ovarian, pancreatic and non-small cell lung carcinoma. However, in clinical use PTX can have adverse side effects or inadequate pharmacodynamic parameters, limiting its use. Nanotechnology is often employed to reduce the therapeutic dosage required for effective therapy, while also minimizing the systemic side effects of chemotherapy drugs. However, there is no nanoformulation of paclitaxel with chemosensitization motifs built in. With this objective, we screened eleven pharmaceutical excipients to develop an alternative paclitaxel nanoformulation using a self-assembly method. Based on the screening results, we observed tannic acid possesses unique properties to produce a paclitaxel nanoparticle formulation, i.e., tannic acid-paclitaxel nanoparticles. This stable TAP nanoformulation, referred to as TAP nanoparticles (TAP NPs), showed a spherical shape of ~ 102 nm and negative zeta potential of ~ -8.85. The presence of PTX in TAP NPs was confirmed by Fourier Transform Infrared (FTIR) spectra, thermogravimetric analyzer (TGA), and X-ray diffraction (XRD). Encapsulation efficiency of PTX in TAP NPs was determined to be ≥96%. Intracellular drug uptake of plain drug PTX on breast cancer cells (MDA-MB-231) shows more or less constant drug levels in 2 to 6 h, suggesting drug efflux by the P-gp transporters, over TAP NPs, in which PTX uptake was more than 95.52 ±â€¯11.01% in 6 h, as analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Various biological assays such as proliferation, clonogenic formation, invasion, and migration confirm superior anticancer effects of TAP NPs over plain PTX at all tested concentrations. P-gp expression, beta-tubulin stabilization, Western blot, and microarray analysis further confirm the improved therapeutic potential of TAP NPs. These results suggest that the TAP nanoformulation provides an important reference for developing a therapeutic nanoformulation affording pronounced, enhanced effects in breast cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Nanopartículas/química , Paclitaxel/farmacologia , Taninos/química , Antineoplásicos Fitogênicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Paclitaxel/química , Tamanho da Partícula , Propriedades de Superfície , Espectrometria de Massas em Tandem , Células Tumorais Cultivadas
15.
ACS Biomater Sci Eng ; 5(5): 2343-2354, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33405784

RESUMO

Bone metastasis occurs in the majority of cancer patients, which hampers quality of life and significantly decreases survival. Aggressive chemotherapy is a traditional treatment regimen that induces severe systemic toxicities. Therefore, bone-directed therapies are highly warranted. We report a novel nanoparticle formulation that is composed of poly(vinylpyrrolidone) and tannic acid core nanoparticles (PVT NPs) that forms self-assembly with zoledronic acid (ZA@PVT NPs). The construction of ZA@PVT NPs was confirmed by particle size, zeta potential, transmission electron microscopy, and spectral analyses. An optimized bone-targeted ZA@PVT NPs formulation showed greater binding and internalization in in vitro with metastasis prostate and breast cancer cells. ZA@PVT NPs were able to deliver ZA more efficiently to tumor cells, which inhibited proliferation of human prostate and breast cancer cells. In addition, ZA@PVT NPs were capable of targeting mouse bones and prostate tumor microarray tissues (ex vivo) while sparing all other vital organs. More importantly, ZA@PVT NPs induce chemo sensitization to docetaxel treatment in cancer cells. Overall, the study results confirm that ZA-based, bone-targeted NPs have great potential for the treatment of bone metastasis in the near future.

16.
Cancers (Basel) ; 10(9)2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-30149628

RESUMO

The therapeutic application of microRNA(s) in the field of cancer has generated significant attention in research. Previous studies have shown that miR-205 negatively regulates prostate cancer cell proliferation, metastasis, and drug resistance. However, the delivery of miR-205 is an unmet clinical need. Thus, the development of a viable nanoparticle platform to deliver miR-205 is highly sought. A novel magnetic nanoparticle (MNP)-based nanoplatform composed of an iron oxide core with poly(ethyleneimine)-poly(ethylene glycol) layer(s) was developed. An optimized nanoplatform composition was confirmed by examining the binding profiles of MNPs with miR-205 using agarose gel and fluorescence methods. The novel formulation was applied to prostate cancer cells for evaluating cellular uptake, miR-205 delivery, and anticancer, antimetastasis, and chemosensitization potentials against docetaxel treatment. The improved uptake and efficacy of formulations were studied with confocal imaging, flow cytometry, proliferation, clonogenicity, Western blot, q-RT-PCR, and chemosensitization assays. Our findings demonstrated that the miR-205 nanoplatform induces significant apoptosis and enhancing chemotherapeutic effects in prostate cancer cells. Overall, these study results provide a strong proof-of-concept for a novel nonviral-based nanoparticle protocol for effective microRNA delivery to prostate cancer cells.

17.
Acta Pharm Sin B ; 8(4): 602-614, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30109184

RESUMO

The goal of this investigation was to develop and demonstrate a polymer/paclitaxel self-assembly (PTX-SA) formulation. Polymer/PTX-SAs were screened based on smaller size of formulation using dynamic light scattering analysis. Additionally, fluorescence microscopy and flow cytometry studies exhibited that polyvinylpyrrolidone (PVP)-based PTX-SAs (PVP/PTX-SAs) had superior cellular internalization capability in MCF7 and MDA-MB-231 breast cancer cells. The optimized PVP/PTX-SAs exhibited less toxicity to human red blood cells indicating a suitable formulation for reducing systemic toxicity. The formation of PVP and PTX self-assemblies was confirmed using fluorescence quenching and transmission electron microscopy which indicated that the PVP/PTX-SAs were spherical in shape with an average size range of 53.81 nm as detected by transmission electron microscopy (TEM). FTIR spectral analysis demonstrates incorporation of polymer and paclitaxel functional groups in PVP/PTX-SAs. Both proliferation (MTS) and clonogenic (colony formation) assays were used to validate superior anticancer activity of PVP/PTX-SAs in breast cancer cells over paclitaxel. Such superior anticancer activity was also demonstrated by downregulation of the expression of pro-survival protein (Bcl-xL), upregulation of apoptosis-associated proteins (Bid, Bax, cleaved caspase 7, and cleaved PARP) and ß-tubulin stabilization. These results support the hypothesis that PVP/PTX-SAs improved paclitaxel delivery to cancer cells.

18.
Pharmaceutics ; 10(3)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071698

RESUMO

Lung cancer (LC) is one of the leading causes of death in both men and women in the United States. Tannic acid (TA), a water-soluble polyphenol, exhibits a wide range of biological activities. TA has received much attention as a promising compound in the biomaterial and drug delivery fields. Lung fluid (LF) is a major barrier for distribution of drugs to the lungs. Therefore, the purpose of this study was to examine TA interaction with LF for effective delivery of anti-cancer drug molecules via pulmonary delivery. The extent of adsorption of LF proteins by TA was revealed by fluorescence quenching in fluorescence spectroscopy. The presence of LF in TA-LF complexes was noticed by the presence of protein peaks at 1653 cm-1. Both protein dot and SDS-PAGE analysis confirmed LF protein complexation at all TA concentrations employed. A stable particle TA-LF complex formation was observed through transmission electron microscopy (TEM) analysis. The complexation pattern measured by dynamic light scattering (DLS) indicated that it varies depending on the pH of the solutions. The degree of LF presence in TA-LF complexes signifies its interactive behavior in LC cell lines. Such superior interaction offered an enhanced anti-cancer activity of drugs encapsulated in TA-LF complex nanoformulations. Our results indicate that TA binds to LF and forms self-assemblies, which profoundly enhance interaction with LC cells. This study demonstrated that TA is a novel carrier for pharmaceutical drugs such as gemcitabine, carboplatin, and irinotecan.

19.
Cancers (Basel) ; 10(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518944

RESUMO

Endoplasmic reticulum (ER) stress is an intriguing target with significant clinical importance in chemotherapy. Interference with ER functions can lead to the accumulation of unfolded proteins, as detected by transmembrane sensors that instigate the unfolded protein response (UPR). Therefore, controlling induced UPR via ER stress with natural compounds could be a novel therapeutic strategy for the management of prostate cancer. Tannic acid (a naturally occurring polyphenol) was used to examine the ER stress mediated UPR pathway in prostate cancer cells. Tannic acid treatment inhibited the growth, clonogenic, invasive, and migratory potential of prostate cancer cells. Tannic acid demonstrated activation of ER stress response (Protein kinase R-like endoplasmic reticulum kinase (PERK) and inositol requiring enzyme 1 (IRE1)) and altered its regulatory proteins (ATF4, Bip, and PDI) expression. Tannic acid treatment affirmed upregulation of apoptosis-associated markers (Bak, Bim, cleaved caspase 3, and cleaved PARP), while downregulation of pro-survival proteins (Bcl-2 and Bcl-xL). Tannic acid exhibited elevated G1 population, due to increase in p18INK4C and p21WAF1/CIP1 expression, while cyclin D1 expression was inhibited. Reduction of MMP2 and MMP9, and reinstated E-cadherin signifies the anti-metastatic potential of this compound. Altogether, these results demonstrate that tannic acid can promote apoptosis via the ER stress mediated UPR pathway, indicating a potential candidate for cancer treatment.

20.
Biochem Biophys Rep ; 12: 214-219, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29214223

RESUMO

PURPOSE: Monocytes serve as sanctuary sites for HIV-1 from which virus is difficult to be eliminated. Therefore, an effective viral suppression in monocytes is critical for effective antiretroviral therapy (ART). This study focuses on a new strategy using nanoformulation to optimize the efficacy of ART drugs in HIV-infected monocytes. METHODS: Poly(lactic-co-glycolic acid) (PLGA)-based elvitegravir nanoparticles (PLGA-EVG) were prepared by nano-precipitation technique. The physicochemical properties of PLGA-EVG were characterized using transmission electron microscopy, dynamic light scattering, and Fourier-transform infrared spectroscopy. Cellular uptake study was performed by fluorescence microscopy and flow cytometry. All in vitro experiments were performed by using HIV-infected monocytic cell lines U1 and HIV-infected primary macrophages. Elvitegravir quantification was performed using LC-MS/MS. HIV viral replication was assessed by using p24 ELISA. RESULTS: We developed a PLGA-EVG nanoparticle formulation with particle size of ~ 47 nm from transmission electron microscopy and zeta potential of ~ 6.74 mV from dynamic light scattering. These nanoparticles demonstrated a time- and concentration-dependent uptakes in monocytes. PLGA-EVG formulation showed a ~ 2 times higher intracellular internalization of EVG than control group (EVG alone). PLGA-EVG nanoparticles also demonstrated superior viral suppression over control for a prolonged period of time. CONCLUSIONS: PLGA-based EVG nanoformulation increased the intracellular uptake of EVG, as well as enhanced viral suppression in HIV-infected macrophages, suggesting its potential for improved HIV treatment in monocytic cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...