Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2315989121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451948

RESUMO

PD1 blockade therapy, harnessing the cytotoxic potential of CD8+ T cells, has yielded clinical success in treating malignancies. However, its efficacy is often limited due to the progressive differentiation of intratumoral CD8+ T cells into a hypofunctional state known as terminal exhaustion. Despite identifying CD8+ T cell subsets associated with immunotherapy resistance, the molecular pathway triggering the resistance remains elusive. Given the clear association of CD38 with CD8+ T cell subsets resistant to anti-PD1 therapy, we investigated its role in inducing resistance. Phenotypic and functional characterization, along with single-cell RNA sequencing analysis of both in vitro chronically stimulated and intratumoral CD8+ T cells, revealed that CD38-expressing CD8+ T cells are terminally exhausted. Exploring the molecular mechanism, we found that CD38 expression was crucial in promoting terminal differentiation of CD8+ T cells by suppressing TCF1 expression, thereby rendering them unresponsive to anti-PD1 therapy. Genetic ablation of CD38 in tumor-reactive CD8+ T cells restored TCF1 levels and improved the responsiveness to anti-PD1 therapy in mice. Mechanistically, CD38 expression on exhausted CD8+ T cells elevated intracellular Ca2+ levels through RyR2 calcium channel activation. This, in turn, promoted chronic AKT activation, leading to TCF1 loss. Knockdown of RyR2 or inhibition of AKT in CD8+ T cells maintained TCF1 levels, induced a sustained anti-tumor response, and enhanced responsiveness to anti-PD1 therapy. Thus, targeting CD38 represents a potential strategy to improve the efficacy of anti-PD1 treatment in cancer.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Linfócitos T CD8-Positivos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Subpopulações de Linfócitos T/metabolismo
2.
Cells ; 12(15)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37566017

RESUMO

Intravesical immunotherapy with Bacillus Calmette-Guerin (BCG) is a standard of care therapy for non-muscle invasive bladder cancer (NMIBC), which accounts for about 75% of newly diagnosed urothelial cancer. However, given the frequent recurrence and progression, identification of a pre-treatment biomarker capable of predicting responsiveness to BCG in NMIBC is of utmost importance. Herein, using multiparametric flow cytometry, we characterized CD8+ T cells from peripheral blood and tumor tissues collected from 27 pre-BCG patients bearing NMIBC to obtain immune correlates of bladder cancer prognosis and responsiveness to BCG therapy. We observed that intratumoral CD8+ T cell subsets were highly heterogenous in terms of their differentiation state and exist at different proportions in tumor tissues. Remarkably, among the different CD8+ T cell subsets present in the tumor tissues, the frequency of the terminally exhausted-like CD8+ T cell subset, marked as PD1+CD38+Tim3+ CD8+ T cells, was inversely correlated with a favorable outcome for patients and a responsiveness to BCG therapy. Moreover, we also noted that the intratumoral abundance of the progenitor exhausted-like PD1+CD8+ T cell subset in pre-BCG NMIBC tumor tissues was indicative of better recurrence-free survival after BCG. Collectively, our study led to the identification of biomarkers that can predict the therapeutic responsiveness of BCG in NMIBC.


Assuntos
Vacina BCG , Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Humanos , Vacina BCG/uso terapêutico , Linfócitos T CD8-Positivos/patologia , Receptor Celular 2 do Vírus da Hepatite A , Imunoterapia , Neoplasias não Músculo Invasivas da Bexiga/tratamento farmacológico , Neoplasias não Músculo Invasivas da Bexiga/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia
3.
Cancer Res ; 82(14): 2640-2655, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35648389

RESUMO

Effector CD8+ T cells rely primarily on glucose metabolism to meet their biosynthetic and functional needs. However, nutritional limitations in the tumor microenvironment can cause T-cell hyporesponsiveness. Therefore, T cells must acquire metabolic traits enabling sustained effector function at the tumor site to elicit a robust antitumor immune response. Here, we report that IL12-stimulated CD8+ T cells have elevated intracellular acetyl CoA levels and can maintain IFNγ levels in nutrient-deprived, tumor-conditioned media (TCM). Pharmacological and metabolic analyses demonstrated an active glucose-citrate-acetyl CoA circuit in IL12-stimulated CD8+ T cells supporting an intracellular pool of acetyl CoA in an ATP-citrate lyase (ACLY)-dependent manner. Intracellular acetyl CoA levels enhanced histone acetylation, lipid synthesis, and IFNγ production, improving the metabolic and functional fitness of CD8+ T cells in tumors. Pharmacological inhibition or genetic knockdown of ACLY severely impaired IFNγ production and viability of CD8+ T cells in nutrient-restricted conditions. Furthermore, CD8+ T cells cultured in high pyruvate-containing media in vitro acquired critical metabolic features of IL12-stimulated CD8+ T cells and displayed improved antitumor potential upon adoptive transfer in murine lymphoma and melanoma models. Overall, this study delineates the metabolic configuration of CD8+ T cells required for stable effector function in tumors and presents an affordable approach to promote the efficacy of CD8+ T cells for adoptive T-cell therapy. SIGNIFICANCE: IL12-mediated metabolic reprogramming increases intracellular acetyl CoA to promote the effector function of CD8+ T cells in nutrient-depleted tumor microenvironments, revealing strategies to potentiate the antitumor efficacy of T cells.


Assuntos
ATP Citrato (pro-S)-Liase , Neoplasias , ATP Citrato (pro-S)-Liase/metabolismo , Acetilcoenzima A/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Humanos , Interleucina-12 , Camundongos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...