Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
The lancet ; 3(6)2021. map
Artigo em Português | Sec. Est. Saúde SP, Coleciona SUS, CONASS, LILACS, SESSP-IALPROD, Sec. Est. Saúde SP | ID: biblio-1253678

RESUMO

Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, which are typically transmitted via respiratory droplets, are leading causes of invasive diseases, including bacteraemic pneumonia and meningitis, and of secondary infections subsequent to post-viral respiratory disease. The aim of this study was to investigate the incidence of invasive disease due to these pathogens during the early months of the COVID-19 pandemic. Methods In this prospective analysis of surveillance data, laboratories in 26 countries and territories across six continents submitted data on cases of invasive disease due to S pneumoniae, H influenzae, and N meningitidis from Jan 1, 2018, to May, 31, 2020, as part of the Invasive Respiratory Infection Surveillance (IRIS) Initiative. Numbers of weekly cases in 2020 were compared with corresponding data for 2018 and 2019. Data for invasive disease due to Streptococcus agalactiae, a non-respiratory pathogen, were collected from nine laboratories for comparison. The stringency of COVID-19 containment measures was quantified using the Oxford COVID-19 Government Response Tracker. Changes in population movements were assessed using Google COVID-19 Community Mobility Reports. Interrupted time-series modelling quantified changes in the incidence of invasive disease due to S pneumoniae, H influenzae, and N meningitidis in 2020 relative to when containment measures were imposed. Findings 27 laboratories from 26 countries and territories submitted data to the IRIS Initiative for S pneumoniae (62 434 total cases), 24 laboratories from 24 countries submitted data for H influenzae (7796 total cases), and 21 laboratories from 21 countries submitted data for N meningitidis (5877 total cases). All countries and territories had experienced a significant and sustained reduction in invasive diseases due to S pneumoniae, H influenzae, and N meningitidis in early 2020 (Jan 1 to May 31, 2020), coinciding with the introduction of COVID-19 containment measures in each country. By contrast, no significant changes in the incidence of invasive S agalactiae infections were observed. Similar trends were observed across most countries and territories despite differing stringency in COVID-19 control policies. The incidence of reported S pneumoniae infections decreased by 68% at 4 weeks (incidence rate ratio 0·32 [95% CI 0·27­0·37]) and 82% at 8 weeks (0·18 [0·14­0·23]) following the week in which significant changes in population movements were recorded. Interpretation The introduction of COVID-19 containment policies and public information campaigns likely reduced transmission of S pneumoniae, H influenzae, and N meningitidis, leading to a significant reduction in life-threatening invasive diseases in many countries worldwide. Funding Wellcome Trust (UK), Robert Koch Institute (Germany), Federal Ministry of Health (Germany), Pfizer, Merck, Health Protection Surveillance Centre (Ireland), SpID-Net project (Ireland), European Centre for Disease Prevention and Control (European Union), Horizon 2020 (European Commission), Ministry of Health (Poland), National Programme of Antibiotic Protection (Poland), Ministry of Science and Higher Education (Poland), Agencia de Salut Pública de Catalunya (Spain), Sant Joan de Deu Foundation (Spain), Knut and Alice Wallenberg Foundation (Sweden), Swedish Research Council (Sweden), Region Stockholm (Sweden), Federal Office of Public Health of Switzerland (Switzerland), and French Public Health Agency (France).


Assuntos
Características de Residência , Haemophilus influenzae , Prevenção de Doenças , Pandemias , Coinfecção , Antibacterianos
2.
Exp Cell Res ; 231(1): 38-49, 1997 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-9056410

RESUMO

The subcellular distribution of tissue transglutaminase in human umbilical vein endothelial cells and human arterial and venous smooth muscle cells was examined. Double-immunofluorescence staining of smooth muscle cells and endothelial cells with anti-transglutaminase antisera and rhodamine-tagged phalloidin revealed codistribution of transglutaminase with the stress fibers, with endothelial cells also containing a cytoplasmic pool. This pattern of distribution was confirmed by confocal microscopy. Immunoprecipitation experiments demonstrated that transglutaminase co-immunoprecipitated with myosin in high-molecular-weight complexes, but not with actin, suggesting that the association of transglutaminase with the stress fibers was due to its cross-linking to myosin. About 97% of endothelial cell transglutaminase activity was present in the cytosolic fraction and 3% in the particulate fraction. The detergent-insoluble fraction was practically devoid of activity as measured by the putrescine assay, but was active as evidenced by the covalent cross-linking of 125I-fibronectin. Western blotting with a polyclonal rabbit antiserum raised against human erythrocyte transglutaminase detected high levels of enzyme in endothelial cell cytosol and both detergent-soluble and detergent-insoluble membrane fractions. In contrast, smooth muscle cells contained much less cytosolic transglutaminase, as determined either functionally or antigenically. Furthermore, within the particulate fraction of the smooth muscle cells, most of the enzyme was located in the detergent-insoluble fraction, as assessed by Western blot analysis. Retinoic acid increased the levels of enzyme in the cytosol of all cell types and the increases were correlated with increases in mRNA. Thus, tissue transglutaminase is present in various particulate fractions of vascular smooth muscle cells and endothelial cells and may be present in this cellular fraction by virtue of autocross-linking of the enzyme itself to stress fiber-associated myosin.


Assuntos
Citoesqueleto/enzimologia , Endotélio Vascular/enzimologia , GTP Fosfo-Hidrolases/análise , Proteínas de Ligação ao GTP , Músculo Liso Vascular/enzimologia , Transglutaminases/análise , Northern Blotting , Células Cultivadas , Citosol/enzimologia , Endotélio Vascular/citologia , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Immunoblotting , Microscopia Confocal , Microscopia de Fluorescência , Músculo Liso Vascular/citologia , Miosinas/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/enzimologia , Transcrição Gênica , Transglutaminases/genética , Transglutaminases/metabolismo , Tretinoína/farmacologia , Veias Umbilicais
3.
J Cell Biol ; 130(1): 207-15, 1995 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-7540617

RESUMO

We studied the formation of capillary tubes by endothelial cells which were sandwiched between two fibrin gels under serum-free conditions. After formation of the overlying fibrin gel, the endothelial cell monolayer rearranged into an extensive net of capillary tubes. Tube formation was apparent at 5 h and was fully developed by 24 h. The capillary tubes were vacuolated, and both intracellular and intercellular lumina were present. Maximal tube formation was observed with fibrin II (which lacks both fibrinopeptide A and B), minimal tube formation with fibrin I (which lacks only fibrinopeptide A), and complete absence of tube formation with fibrin 325 (which lacks the NH2-terminal beta 15-42 sequence, in addition to fibrinopeptides A and B). The inability of fibrin 325 to stimulate capillary tube formation supports the idea that beta 15-42 plays an important role in this process, and its importance was confirmed by the finding that exogenous soluble beta 15-42 inhibited fibrin II-induced capillary tube formation. This effect was specific for fibrin, since beta 15-42 did not inhibit tube formation by endothelial cells sandwiched between collagen gels. The interaction of the apical surface of the endothelial cell with the overlying fibrin II gel, as opposed to the underlying fibrin gel upon which the cells were seeded, was necessary for capillary tube formation. These studies suggest that the beta 15-42 sequence of fibrin interacts with a component of the apical cell surface and that this interaction plays a fundamental role in the induction of endothelial capillary tube formation.


Assuntos
Capilares/citologia , Endotélio Vascular/citologia , Fibrina/farmacologia , Sequência de Aminoácidos , Células Cultivadas , Fibrina/química , Géis , Humanos , Técnicas In Vitro , Integrinas/fisiologia , Dados de Sequência Molecular , Morfogênese , Oligopeptídeos , Receptores de Citoadesina/fisiologia , Receptores de Vitronectina , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA