Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 229: 113080, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34929504

RESUMO

Rice (Oryza sativa L.) is a highly consumed staple crop worldwide, but abiotic/heavy metal stresses acting on the plant cause reduction in yield and quality, thereby impacting global food security. In the present study, we examined the effect of ß-pinene against Arsenic (As)-induced oxidative damage vis-à-vis regulation of activities of enzymatic antioxidants in roots of O. sativa. Effect of As (50 µM), ß-pinene (10 µM; ß-10) and As + ß-10 treatments on root length, shoot length, As accumulation, lipid peroxidation (as malondialdehyde [MDA] content), hydrogen peroxide (H2O2) accumulation, and activities of lipoxygenase (LOX) and enzymatic antioxidants such as ascorbate peroxidase (APX), guaiacol peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) was determined. Exposure of As caused a decline in root and shoot length, and enhancement in As accumulation, lipid peroxidation, and activities of enzymatic antioxidants. However, supplementation of ß-10 (i.e., As + ß-10 treatments) led to an increase in root and shoot length. Treatment with As + ß-10 resulted in a decline in As accumulation, H2O2 content, and MDA content; however, the effect on LOX activity was non-significant, as compared to control. Similarly, with As + ß-10 treatment a reduction in the activities of APX, GPX, GR, SOD, and CAT was observed as compared with As-alone treatment. Pearson's correlation matrix exhibited strong negative correlation between reactive oxygen species (ROS) and root/shoot length, whereas a strong positive correlation was observed between antioxidant enzymes and ROS. The present study demonstrated that ß-pinene significantly ameliorates As-induced oxidative stress and provides tolerance to O. sativa against As-induced toxicity, and thus offer an option of As-mitigation using environment friendly natural plant products. However, to gain insights into the function of ß-pinene in modulating As-induced oxidative damage in plants, further field investigations and exploration of its mechanism of action are needed.


Assuntos
Arsênio , Oryza , Antioxidantes/metabolismo , Arsênio/toxicidade , Monoterpenos Bicíclicos , Catalase/metabolismo , Peróxido de Hidrogênio , Peroxidação de Lipídeos , Oryza/metabolismo , Estresse Oxidativo , Raízes de Plantas/metabolismo , Superóxido Dismutase/metabolismo
2.
Protoplasma ; 250(3): 691-700, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22936022

RESUMO

ß-Pinene, an oxygenated monoterpene, is abundantly found in the environment and widely occurring in plants as a constituent of essential oils. We investigated the phytotoxicity of ß-pinene against two grassy (Phalaris minor, Echinochloa crus-galli) and one broad-leaved (Cassia occidentalis) weeds in terms of germination and root and shoot growth. ß-Pinene (0.02-0.80 mg/ml) inhibited the germination, root length, and shoot length of test weeds in a dose-response manner. The inhibitory effect of ß-pinene was greater in grassy weeds and on root growth than on shoot growth. ß-Pinene (0.04-0.80 mg/ml) reduced the root length in P. minor, E. crus-galli, and C. occidentalis over that in the control by 58-60, 44-92, and 26-85 %, respectively. In contrast, shoot length was reduced over the control by 45-97 % in P. minor, 48-78 % in E. crus-galli, and 11-75 % in C. occidentalis at similar concentrations. Further, we examined the impact of ß-pinene on membrane integrity in P. minor as one of the possible mechanisms of action. Membrane integrity was evaluated in terms of lipid peroxidation, conjugated diene content, electrolyte leakage, and the activity of lipoxygenases (LOX). ß-Pinene (≥0.04 mg/ml) enhanced electrolyte leakage by 23-80 %, malondialdehyde content by 15-67 %, hydrogen peroxide content by 9-39 %, and lipoxygenases activity by 38-383 % over that in the control. It indicated membrane peroxidation and loss of membrane integrity that could be the primary target of ß-pinene. Even the enhanced (9-62 %) activity of protecting enzymes, peroxidases (POX), was not able to protect the membranes from ß-pinene (0.04-0.20 mg/ml)-induced toxicity. In conclusion, our results show that ß-pinene inhibits root growth of the tested weed species through disruption of membrane integrity as indicated by enhanced peroxidation, electrolyte leakage, and LOX activity despite the upregulation of POX activity.


Assuntos
Compostos Bicíclicos com Pontes/farmacologia , Germinação/efeitos dos fármacos , Herbicidas/farmacologia , Monoterpenos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Monoterpenos Bicíclicos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Echinochloa/efeitos dos fármacos , Echinochloa/enzimologia , Echinochloa/crescimento & desenvolvimento , Condutividade Elétrica , Eletrólitos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Lipoxigenase/metabolismo , Malondialdeído/metabolismo , Peroxidases/metabolismo , Phalaris/efeitos dos fármacos , Phalaris/enzimologia , Phalaris/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Senna/efeitos dos fármacos , Senna/enzimologia , Senna/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA