Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443329

RESUMO

Three centrosymmetric diketopyrrolopyrroles possessing either two 2-(2'-methoxyphenyl)benzothiazole or two 2-(2'-methoxyphenyl)benzoxazolo-thiophene scaffolds were synthesized in a straightforward manner, and their photophysical properties were investigated. Their emission was significantly bathochromically shifted as compared with that of simple DPPs reaching 650 nm. Judging from theoretical calculations performed with time-dependent density functional theory, in all three cases the excited state was localized on the DPP core and there was no significant CT character. Consequently, emission was almost independent of solvents' polarity. DPPs possessing 2,5-thiophene units vicinal to DPP core play a role in electronic transitions, resulting in bathochromically shifted absorption and emission. Interestingly, as judged from transient absorption dynamics, intersystem crossing was responsible for the deactivation of the excited states of DPPs possessing para linkers but not in the case of dye bearing meta linker.

2.
J Chem Theory Comput ; 17(8): 5155-5164, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34224244

RESUMO

We present an effective computational protocol (cLR2) to describe both solvatochromism and fluorosolvatochromism. This protocol, which couples the polarizable continuum model to time-dependent density functional theory, simultaneously accounts for both linear-response and state-specific solvation effects. A series of test cases, including solvatochromic and fluorosolvatochromic compounds and excited-state intramolecular proton transfers, are used to highlight that cLR2 is especially beneficial for modeling bright excitations possessing a significant charge-transfer character, as well as cases in which an accurate balance between states of various polarities should be restored.

3.
J Chem Theory Comput ; 17(1): 416-438, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33256412

RESUMO

This work presents a series of highly accurate excited-state properties obtained using high-order coupled-cluster (CC) calculations performed with a series of diffuse containing basis sets, and extensive comparisons with experimental values. Indeed, we have computed the main ground-to-excited transition property, the oscillator strength, and the ground- and excited-state dipole moments, considering 13 small molecules (hydridoboron, hydrogen chloride, water, hydrogen sulfide, boron fluoride, carbon monoxide, dinitrogen, ethylene, formaldehyde, thioformaldehyde, nitroxyl, fluorocarbene, and silylidene). We systematically include corrections up to the quintuple (CCSDTQP) in the CC expansion and extrapolate to the complete basis set limit. When comparisons with experimental measurements are possible, that is, when a number of consistent experimental data can be found, theory typically provides values falling within the experimental error bar for the excited-state properties. Besides completing our previous studies focused on transition energies [J. Chem. Theory Comput. 14 (2018) 4360-4379, ibid. 15 (2019) 1939-1956, ibid. 16 (2020) 1711-1741, and ibid. 16 (2020) 3720-3736], this work also provides ultra-accurate dipoles and oscillator strengths that could be employed for future theoretical benchmarks.

4.
Phys Chem Chem Phys ; 22(43): 25066-25074, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33119009

RESUMO

Two efficient excited state intramolecular proton transfer (ESIPT) dyes based on the hydroxyphenyl-oxazole core and containing one or two triphenylamine donor groups are explored with theoretical tools. These compounds are known to show clear experimental dual emission behaviour, leading to nearly pure white-light emission for one derivative. To probe the excited state properties, we use both Time Dependent Density Functional Theory (TD-DFT) and post Hartree-Fock methods [ADC(2) and CC2] coupled to different solvent models to describe polarisation effects. After validating our theoretical protocol on the two known systems, we design 14 new derivatives with different substitution patterns to quantify the impact of electron accepting and donating groups on the fluorescence spectrum and the ESIPT mechanism. We show that the selected protocol delivers accurate spectroscopic values for the two experimentally-characterised structures, and more importantly, that the relative stabilisation of the keto tautomer depends on the substitution side. Adding donor or acceptor groups to the ESIPT donor moiety favours the formation of the keto form, whereas when placed on the ESIPT accepting side, they tend to preclude ESIPT. Moreover, combining two donor or acceptor substituents generally results in similar ESIPT behaviour as single substitution on one of the two sides: simple additive rules do not apply.

5.
Phys Chem Chem Phys ; 22(2): 854-863, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31840734

RESUMO

Alkylamine-strapped chromophores based on a dithienylpyrrole core, and in which the Excited State Intramolecular Proton Transfer (ESIPT) process yields a zwitterionic structure rather than a keto tautomer have been reported recently (Suzuki et al., Angew. Chem. Int. Ed., 2014, 53, 8231), and are known to exhibit large Stokes shifts. Using Time-Dependent Density Functional Theory (TD-DFT) we investigate the ESIPT mechanism in this family of chromophores considering various substituents and two solvents (cyclohexane and acetone). In order to model the solvent effects, three polarisation models have been applied: the linear response (LR), the corrected linear-response (cLR), and the combination of these two formalisms (LR + cLR). The selected protocol is shown to be effective for a series of compounds with known experimental behaviors, and is then applied to novel derivatives with various donor and acceptor groups and heteroatoms. We determine the absorption and emission wavelengths as well as the energies of the different states that play a role in the ESIPT process. We show that the introduction of electron-withdrawing and electron-donating groups plays an important role in achieving redshifted emission from the ESIPT state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...