Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 60(2): 767-786, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-27983835

RESUMO

By use of a structure-based computational method for identification of structurally novel Janus kinase (JAK) inhibitors predicted to bind beyond the ATP binding site, a potent series of indazoles was identified as selective pan-JAK inhibitors with a type 1.5 binding mode. Optimization of the series for potency and increased duration of action commensurate with inhaled or topical delivery resulted in potent pan-JAK inhibitor 2 (PF-06263276), which was advanced into clinical studies.


Assuntos
Anti-Inflamatórios/farmacologia , Compostos Heterocíclicos com 2 Anéis/farmacologia , Indazóis/farmacologia , Janus Quinases/antagonistas & inibidores , Pneumopatias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Dermatopatias/tratamento farmacológico , Administração Cutânea , Administração por Inalação , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/toxicidade , Sítios de Ligação , Cristalografia por Raios X , Cães , Desenho de Fármacos , Hepatócitos/metabolismo , Compostos Heterocíclicos com 2 Anéis/administração & dosagem , Compostos Heterocíclicos com 2 Anéis/síntese química , Compostos Heterocíclicos com 2 Anéis/toxicidade , Humanos , Indazóis/administração & dosagem , Indazóis/síntese química , Indazóis/toxicidade , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 3/antagonistas & inibidores , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/toxicidade , Ratos , Solubilidade
2.
Cell ; 161(7): 1633-43, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26091040

RESUMO

Lipid biology continues to emerge as an area of significant therapeutic interest, particularly as the result of an enhanced understanding of the wealth of signaling molecules with diverse physiological properties. This growth in knowledge is epitomized by lysophosphatidic acid (LPA), which functions through interactions with at least six cognate G protein-coupled receptors. Herein, we present three crystal structures of LPA1 in complex with antagonist tool compounds selected and designed through structural and stability analyses. Structural analysis combined with molecular dynamics identified a basis for ligand access to the LPA1 binding pocket from the extracellular space contrasting with the proposed access for the sphingosine 1-phosphate receptor. Characteristics of the LPA1 binding pocket raise the possibility of promiscuous ligand recognition of phosphorylated endocannabinoids. Cell-based assays confirmed this hypothesis, linking the distinct receptor systems through metabolically related ligands with potential functional and therapeutic implications for treatment of disease.


Assuntos
Cristalografia por Raios X , Sítios de Ligação , Cromatografia em Gel , Humanos , Ligantes , Modelos Moleculares , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/química , Bibliotecas de Moléculas Pequenas
3.
Artigo em Inglês | MEDLINE | ID: mdl-22684055

RESUMO

The role of ADAM-8 in cancer and inflammatory diseases such as allergy, arthritis and asthma makes it an attractive target for drug development. Therefore, the catalytic domain of human ADAM-8 was expressed, purified and crystallized in complex with a hydroxamic acid inhibitor, batimastat. The crystal structure of the enzyme-inhibitor complex was refined to 2.1 Å resolution. ADAM-8 has an overall fold similar to those of other ADAM members, including a central five-stranded ß-sheet and a catalytic Zn(2+) ion. However, unique differences within the S1' binding loop of ADAM-8 are observed which might be exploited to confer specificity and selectivity to ADAM-8 competitive inhibitors for the treatment of diseases involving this enzyme.


Assuntos
Proteínas ADAM/química , Domínio Catalítico , Proteínas de Membrana/química , Fenilalanina/análogos & derivados , Inibidores de Proteases/química , Tiofenos/química , Proteínas ADAM/metabolismo , Humanos , Ligantes , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fenilalanina/química , Fenilalanina/metabolismo , Inibidores de Proteases/metabolismo , Ligação Proteica , Desdobramento de Proteína , Tiofenos/metabolismo
4.
Biochem Biophys Res Commun ; 396(2): 543-8, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20435017

RESUMO

The Janus kinase family consists of four members: JAK-1, -2, -3 and TYK-2. While JAK-2 and JAK-3 have been well characterized biochemically, there is little data on TYK-2. Recent work suggests that TYK-2 may play a critical role in the development of a number of inflammatory processes. We have carried out a series of biochemical studies to better understand TYK-2 enzymology and its inhibition profile, in particular how the TYK-2 phosphorylated forms differ from each other and from the other JAK family members. We have expressed and purified milligram quantities of the TYK-2 kinase domain (KD) to high purity and developed a method to separate the non-, mono- (pY(1054)) and di-phosphorylated forms of the enzyme. Kinetic studies (k(cat(app))/K(m(app))) indicated that phosphorylation of the TYK-2-KD (pY(1054)) increased the catalytic efficiency 4.4-fold compared to its non-phosphorylated form, while further phosphorylation to generate the di-phosphorylated enzyme imparted no further increase in activity. These results are in contrast to those obtained with the JAK-2-KD and JAK-3-KD, where little or no increase in activity occurred upon mono-phosphorylation, while di-phosphorylation resulted in a 5.1-fold increase in activity for the JAK-2-KD. Moreover, ATP-competitive inhibitors demonstrated 10-30-fold shifts in potency (K(i(app))) as a result of the TYK-2-KD phosphorylation state, while the shifts for JAK-3-KD were only 2-3-fold and showed little or no change for JAK-2-KD. Thus, the phosphorlyation state imparted differential effects on both activity and inhibition within the JAK family of kinases.


Assuntos
Janus Quinase 2/biossíntese , Janus Quinase 2/isolamento & purificação , Janus Quinase 3/biossíntese , Janus Quinase 3/isolamento & purificação , TYK2 Quinase/biossíntese , TYK2 Quinase/isolamento & purificação , Animais , Catálise , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 3/antagonistas & inibidores , Camundongos , Fosforilação , Estrutura Terciária de Proteína , TYK2 Quinase/antagonistas & inibidores
5.
J Mol Biol ; 400(3): 413-33, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20478313

RESUMO

Janus kinases (JAKs) are critical regulators of cytokine pathways and attractive targets of therapeutic value in both inflammatory and myeloproliferative diseases. Although the crystal structures of active JAK1 and JAK2 kinase domains have been reported recently with the clinical compound CP-690550, the structures of both TYK2 and JAK3 with CP-690550 have remained outstanding. Here, we report the crystal structures of TYK2, a first in class structure, and JAK3 in complex with PAN-JAK inhibitors CP-690550 ((3R,4R)-3-[4-methyl-3-[N-methyl-N-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropionitrile) and CMP-6 (tetracyclic pyridone 2-t-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-one), both of which bind in the ATP-binding cavities of both JAK isozymes in orientations similar to that observed in crystal structures of JAK1 and JAK2. Additionally, a complete thermodynamic characterization of JAK/CP-690550 complex formation was completed by isothermal titration calorimetry, indicating the critical role of the nitrile group from the CP-690550 compound. Finally, computational analysis using WaterMap further highlights the critical positioning of the CP-690550 nitrile group in the displacement of an unfavorable water molecule beneath the glycine-rich loop. Taken together, the data emphasize the outstanding properties of the kinome-selective JAK inhibitor CP-690550, as well as the challenges in obtaining JAK isozyme-selective inhibitors due to the overall structural and sequence similarities between the TYK2, JAK1, JAK2 and JAK3 isozymes. Nevertheless, subtle amino acid variations of residues lining the ligand-binding cavity of the JAK enzymes, as well as the global positioning of the glycine-rich loop, might provide the initial clues to obtaining JAK-isozyme selective inhibitors.


Assuntos
Benzimidazóis/metabolismo , Inibidores Enzimáticos/metabolismo , Janus Quinase 3/química , Piridonas/metabolismo , Pirimidinas/metabolismo , Pirróis/metabolismo , TYK2 Quinase/química , Sítios de Ligação , Calorimetria , Humanos , Janus Quinase 3/metabolismo , Cinética , Modelos Moleculares , Piperidinas , Ligação Proteica , Estrutura Terciária de Proteína , TYK2 Quinase/metabolismo
6.
Protein Expr Purif ; 69(1): 54-63, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19781647

RESUMO

Janus-associated kinases (JAKs) play critical roles in cytokine signaling, and have emerged as viable therapeutic targets in inflammation and oncology related diseases. To date, targeting JAK proteins with highly selective inhibitor compounds have remained elusive. We have expressed the active kinase domains for both JAK2 and JAK3 and devised purification protocols to resolve the non-, mono- (Y1007) and diphosphorylated (Y1007 and Y1008) states of JAK2 and non- and monophosphorylated states of JAK3 (Y980). An optimal purified protein yield of 20, 29 and 69mg per 20L cell culture was obtained for the three JAK2 forms, respectively, and 12.2 and 2.3mg per 10L fermentation for the two JAK3 forms allowing detailed biochemical and biophysical studies. To monitor the purification process we developed a novel HPLC activity assay where a sequential order of phosphorylation was observed whereby the first tyrosine residue was completely phosphorylated prior to phosphorylation of the tandem tyrosine residue. A Caliper-based microfluidics assay was used to determine the kinetic parameters (K(m) and k(cat)) for each phosphorylated state, showing that monophosphorylated (Y1007) JAK2 enzyme activity increased 9-fold over that of the nonphosphorylated species, and increased an additional 6-fold for the diphosphorylated (Y1007/Y1008) species, while phosphorylation of JAK3 resulted in a negligible increase in activity. Moreover, crystal structures have been generated for each isolated state of JAK2 and JAK3 with resolutions better than 2.4A. The generation of these reagents has enabled kinetic and structural characterization to inform the design of potent and selective inhibitors of the JAK family.


Assuntos
Janus Quinase 2/química , Janus Quinase 2/isolamento & purificação , Janus Quinase 3/química , Janus Quinase 3/isolamento & purificação , Sequência de Aminoácidos , Biocatálise , Cromatografia Líquida de Alta Pressão , Cristalização , Eletroforese em Gel de Poliacrilamida , Fermentação , Humanos , Cinética , Dados de Sequência Molecular , Fosforilação , Estrutura Terciária de Proteína
7.
J Mol Biol ; 380(5): 828-43, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18589439

RESUMO

The guanine nucleotide exchange factor (GEF) Vav1 plays an important role in T-cell activation and tumorigenesis. In the GEF superfamily, Vav1 has the ability to interact with multiple families of Rho GTPases. The structure of the Vav1 DH-PH-CRD/Rac1 complex to 2.6 A resolution reveals a unique intramolecular network of contacts between the Vav1 cysteine-rich domain (CRD) and the C-terminal helix of the Vav1 Dbl homology (DH) domain. These unique interactions stabilize the Vav1 DH domain for its intimate association with the Switch II region of Rac1 that is critical for the displacement of the guanine nucleotide. Small angle x-ray scattering (SAXS) studies support this domain arrangement for the complex in solution. Further, mutational analyses confirms that the atypical CRD is critical for maintaining both optimal guanine nucleotide exchange activity and broader specificity of Vav family GEFs. Taken together, the data outline the detailed nature of Vav1's ability to contact a range of Rho GTPases using a novel protein-protein interaction network.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Linfócitos T/química , Alanina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Cristalografia por Raios X , Ativação Enzimática , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-vav/química , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Solubilidade , Difração de Raios X , Proteínas rac1 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
8.
J Biol Chem ; 282(50): 36505-13, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17897949

RESUMO

The Eph family of receptor tyrosine kinases has been implicated in tumorigenesis as well as pathological forms of angiogenesis. Understanding how to modulate the interaction of Eph receptors with their ephrin ligands is therefore of critical interest for the development of therapeutics to treat cancer. Previous work identified a set of 12-mer peptides that displayed moderate binding affinity but high selectivity for the EphB2 receptor. The SNEW antagonistic peptide inhibited the interaction of EphB2 with ephrinB2, with an IC50 of approximately 15 microm. To gain a better molecular understanding of how to inhibit Eph/ephrin binding, we determined the crystal structure of the EphB2 receptor in complex with the SNEW peptide to 2.3-A resolution. The peptide binds in the hydrophobic ligand-binding cleft of the EphB2 receptor, thus competing with the ephrin ligand for receptor binding. However, the binding interactions of the SNEW peptide are markedly different from those described for the TNYL-RAW peptide, which binds to the ligand-binding cleft of EphB4, indicating a novel mode of antagonism. Nevertheless, we identified a conserved structural motif present in all known receptor/ligand interfaces, which may serve as a scaffold for the development of therapeutic leads. The EphB2-SNEW complex crystallized as a homodimer, and the residues involved in the dimerization interface are similar to those implicated in mediating tetramerization of EphB2-ephrinB2 complexes. The structure of EphB2 in complex with the SNEW peptide reveals novel binding determinants that could serve as starting points in the development of compounds that modulate Eph receptor/ephrin interactions and biological activities.


Assuntos
Peptídeos/química , Receptor EphB2/antagonistas & inibidores , Receptor EphB2/química , Motivos de Aminoácidos/fisiologia , Cristalografia por Raios X , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/enzimologia , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica/fisiologia , Estrutura Quaternária de Proteína/fisiologia , Receptor EphB2/genética , Receptor EphB2/metabolismo
9.
Protein Expr Purif ; 53(1): 51-62, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17275330

RESUMO

The signal transduction pathway involving the Vav1 guanine nucleotide exchange factor (GEF) and the Rac1 GTPase plays several key roles in the immune response mediated by the T cell receptor. Vav1 is also a unique member of the GEF family in that it contains a cysteine-rich domain (CRD) that is critical for Rac1 binding and maximal guanine nucleotide exchange activity, and thus may provide a unique protein-protein interface compared to other GEF/GTPase pairs. Here, we have applied a number of remedial structural proteomics strategies, such as construct and expression optimization, surface mutagenesis, limited proteolysis, and protein formulation to successfully express, purify, and crystallize the Vav1-DH-PH-CRD/Rac1 complex in an active conformation. We have also systematically characterized various Vav1 domains in a GEF assay and Rac1 in vitro binding experiments. In the context of Vav1-DH-PH-CRD, the zinc finger motif of the CRD is required for the expression of stable Vav1, as well as for activity in both a GEF assay and in vitro formation of a Vav1/Rac1 complex suitable for biophysical and structural characterization. Our data also indicate that the isolated CRD maintains a low level of specific binding to Rac1, appears to be folded based on 1D NMR analysis and coordinates two zinc ions based on ICP-MS analysis. The protein reagents generated here are essential tools for the determination of a three dimensional Vav1/Rac1 complex crystal structure and possibly for the identification of inhibitors of the Vav1/Rac1 protein-protein interaction with potential to inhibit lymphocyte activation.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-vav/isolamento & purificação , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Cristalização , Cisteína/química , DNA Complementar , Glutationa Transferase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/análise , Hidrólise , Cinética , Dados de Sequência Molecular , Mutagênese , Nanotecnologia , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-vav/química , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Zinco/química
10.
J Biol Chem ; 281(38): 28185-92, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16867992

RESUMO

Increasing evidence implicates the interaction of the EphB4 receptor with its preferred ligand, ephrinB2, in pathological forms of angiogenesis and in tumorigenesis. To identify the molecular determinants of the unique specificity of EphB4 for ephrinB2, we determined the crystal structure of the ligand binding domain of EphB4 in complex with the extracellular domain of ephrinB2. This structural analysis suggested that one amino acid, Leu-95, plays a particularly important role in defining the structural features that confer the ligand selectivity of EphB4. Indeed, all other Eph receptors, which promiscuously bind many ephrins, have a conserved arginine at the position corresponding to Leu-95 of EphB4. We have also found that amino acid changes in the EphB4 ligand binding cavity, designed based on comparison with the crystal structure of the more promiscuous EphB2 receptor, yield EphB4 variants with altered binding affinity for ephrinB2 and an antagonistic peptide. Isothermal titration calorimetry experiments with an EphB4 Leu-95 to arginine mutant confirmed the importance of this amino acid in conferring high affinity binding to both ephrinB2 and the antagonistic peptide ligand. Isothermal titration calorimetry measurements also revealed an interesting thermodynamic discrepancy between ephrinB2 binding, which is an entropically driven process, and peptide binding, which is an enthalpically driven process. These results provide critical information on the EphB4*ephrinB2 protein interfaces and their mode of interaction, which will facilitate development of small molecule compounds inhibiting the EphB4*ephrinB2 interaction as novel cancer therapeutics.


Assuntos
Efrina-B2/química , Receptor EphB4/química , Sítios de Ligação , Cristalografia , Entropia , Humanos , Termodinâmica
11.
Structure ; 14(2): 321-30, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16472751

RESUMO

The Eph receptor tyrosine kinases and their ligands, the ephrins, regulate numerous biological processes in developing and adult tissues and have been implicated in cancer progression and in pathological forms of angiogenesis. We report the crystal structure of the EphB4 receptor in complex with a highly specific antagonistic peptide at a resolution of 1.65 angstroms. The peptide is situated in a hydrophobic cleft of EphB4 corresponding to the cleft in EphB2 occupied by the ephrin-B2 G-H loop, consistent with its antagonistic properties. Structural analysis identifies several residues within the EphB4 binding cleft that likely determine the ligand specificity of this receptor, while isothermal titration calorimetry experiments with truncated forms of the peptide define the amino acid residues of the peptide that are critical for receptor binding. These studies reveal structural features that will aid drug discovery initiatives to develop EphB4 antagonists for therapeutic applications.


Assuntos
Efrina-B2/química , Modelos Moleculares , Peptídeos/química , Receptor EphB4/química , Sítios de Ligação , Calorimetria , Cristalografia por Raios X , Humanos , Estrutura Terciária de Proteína , Receptor EphB4/antagonistas & inibidores , Receptor EphB4/metabolismo , Termodinâmica
12.
Mol Endocrinol ; 19(5): 1125-34, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15705662

RESUMO

The human nuclear xenobiotic receptor, pregnane X receptor (PXR), detects a variety of structurally distinct endogenous and xenobiotic compounds and controls expression of genes central to drug and cholesterol metabolism. The macrolide antibiotic rifampicin, a front-line treatment for tuberculosis, is an established PXR agonist and, at 823 Da, is one of the largest known ligands for the receptor. We present the 2.8 A crystal structure of the ligand-binding domain of human PXR in complex with rifampicin. We also use structural and mutagenesis data to examine the origins of the directed promiscuity exhibited by the PXRs across species. Three structurally flexible loops adjacent to the ligand-binding pocket of PXR are disordered in this crystal structure, including the 200-210 region that is part of a sequence insert novel to the promiscuous PXRs relative to other members of the nuclear receptor superfamily. The 4-methyl-1-piperazinyl ring of rifampicin, which would lie adjacent to the disordered protein regions, is also disordered and not observed in the structure. Taken together, our results indicate that one wall of the PXR ligand-binding cavity can remain flexible even when the receptor is in complex with an activating ligand. These observations highlight the key role that structural flexibility plays in PXR's promiscuous response to xenobiotics.


Assuntos
Antibióticos Antituberculose/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Rifampina/metabolismo , Animais , Antibióticos Antituberculose/química , Relação Dose-Resposta a Droga , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Mutação , Receptor de Pregnano X , Ligação Proteica , Estrutura Terciária de Proteína , Coelhos , Ratos , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Esteroides/química , Receptores de Esteroides/genética , Rifampina/química , Especificidade da Espécie
13.
J Mol Biol ; 339(4): 773-84, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15165849

RESUMO

Human topoisomerase I relaxes superhelical tension associated with DNA replication, transcription and recombination by reversibly nicking one strand of duplex DNA and forming a covalent 3'-phosphotyrosine linkage. This enzyme is the sole target of the camptothecin family of anticancer compounds, which acts by stabilizing the covalent protein-DNA complex and enhancing apoptosis through blocking the advancement of replication forks. Mutations that impart resistance to camptothecin have been identified in several regions of human topoisomerase I. We present the crystal structures of two camptothecin-resistant forms of human topoisomerase I (Phe361Ser at 2.6A resolution and Asn722Ser at 2.3A resolution) in ternary complexes with DNA and topotecan (Hycamtin), a camptothecin analogue currently in widespread clinical use. While the alteration of Asn722 to Ser leads to the elimination of a water-mediated contact between the enzyme and topotecan, we were surprised to find that a well-ordered water molecule replaces the hydrophobic phenylalanine side-chain in the Phe361Ser structure. We further consider camptothecin-resistant mutations at seven additional sites in human topoisomerase I and present structural evidence explaining their possible impact on drug binding. These results advance our understanding of the mechanism of cell poisoning by camptothecin and suggest specific modifications to the drug that may improve efficacy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Camptotecina/farmacologia , DNA Topoisomerases Tipo I/genética , Mutação , Sequência de Bases , DNA , DNA Topoisomerases Tipo I/química , Humanos , Modelos Moleculares
14.
J Biol Chem ; 278(14): 12461-6, 2003 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12533542

RESUMO

1-beta-d-Arabinofuranosylcytosine (Ara-C) is a potent antineoplastic drug used in the treatment of acute leukemia. Previous biochemical studies indicated the incorporation of Ara-C into DNA reduced the catalytic activity of human topoisomerase I by decreasing the rate of single DNA strand religation by the enzyme by 2-3-fold. We present the 3.1 A crystal structure of human topoisomerase I in covalent complex with an oligonucleotide containing Ara-C at the +1 position of the non-scissile DNA strand. The structure reveals that a hydrogen bond formed between the 2'-hydroxyl of Ara-C and the O4' of the adjacent -1 base 5' to the damage site stabilizes a C3'-endo pucker in the Ara-C arabinose ring. The structural distortions at the site of damage are translated across the DNA double helix to the active site of human topoisomerase I. The free sulfhydryl at the 5'-end of the nicked DNA strand in this trapped covalent complex is shifted out of alignment with the 3'-phosphotyrosine linkage at the catalytic tyrosine 723 residue, producing a geometry not optimal for religation. The subtle structural changes caused by the presence of Ara-C in the DNA duplex may contribute to the cytotoxicity of this leukemia drug by prolonging the lifetime of the covalent human topoisomerase I-DNA complex.


Assuntos
Antimetabólitos Antineoplásicos/química , Citarabina/química , DNA Topoisomerases Tipo I/química , Sítios de Ligação , Cristalografia , DNA/química , Indução Enzimática/efeitos dos fármacos , Humanos , Leucemia/tratamento farmacológico , Estrutura Terciária de Proteína/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...