Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 42(1): 42-56, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27669649

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery is an assembly of protein subcomplexes (ESCRT I-III) that cooperate with the ATPase VPS4 to mediate scission of membrane necks from the inside. The ESCRT machinery has evolved as a multipurpose toolbox for mediating receptor sorting, membrane remodeling, and membrane scission, with ESCRT-III as the major membrane-remodeling component. Cellular membrane scission processes mediated by ESCRT-III include biogenesis of multivesicular endosomes, budding of enveloped viruses, cytokinetic abscission, neuron pruning, plasma membrane wound repair, nuclear pore quality control, nuclear envelope reformation, and nuclear envelope repair. We describe here the involvement of the ESCRT machinery in these processes and review current models for how ESCRT-III-containing multimeric filaments serve to mediate membrane remodeling and scission.


Assuntos
Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Adenosina Trifosfatases/metabolismo , Humanos
2.
Trends Cell Biol ; 27(1): 1-11, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27810282

RESUMO

Cytokinesis is the final stage of cell division and is concluded by abscission of the intercellular bridge to physically separate the daughter cells. Timing of cytokinetic abscission is monitored by a molecular machinery termed the abscission checkpoint. This machinery delays abscission in cells with persistent chromatin in the intercellular bridge. Recent work has also uncovered its response to high membrane tension, nuclear pore defects, and DNA replication stress. Although it is known that the abscission checkpoint depends on persistent activity of the Aurora B protein kinase, we have only recently begun to understand its molecular basis. We propose here a molecular framework for abscission checkpoint signaling and we discuss outstanding questions relating to its function and physiological relevance.


Assuntos
Pontos de Checagem do Ciclo Celular , Animais , Citocinese , Replicação do DNA , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Modelos Biológicos , Transdução de Sinais
3.
J Cell Biol ; 212(5): 499-513, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26929449

RESUMO

Cytokinetic abscission, the final stage of cell division where the two daughter cells are separated, is mediated by the endosomal sorting complex required for transport (ESCRT) machinery. The ESCRT-III subunit CHMP4B is a key effector in abscission, whereas its paralogue, CHMP4C, is a component in the abscission checkpoint that delays abscission until chromatin is cleared from the intercellular bridge. How recruitment of these components is mediated during cytokinesis remains poorly understood, although the ESCRT-binding protein ALIX has been implicated. Here, we show that ESCRT-II and the ESCRT-II-binding ESCRT-III subunit CHMP6 cooperate with ESCRT-I to recruit CHMP4B, with ALIX providing a parallel recruitment arm. In contrast to CHMP4B, we find that recruitment of CHMP4C relies predominantly on ALIX. Accordingly, ALIX depletion leads to furrow regression in cells with chromosome bridges, a phenotype associated with abscission checkpoint signaling failure. Collectively, our work reveals a two-pronged recruitment of ESCRT-III to the cytokinetic bridge and implicates ALIX in abscission checkpoint signaling.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HeLa , Humanos , Células Tumorais Cultivadas
4.
Nature ; 522(7555): 231-5, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26040712

RESUMO

At the onset of metazoan cell division the nuclear envelope breaks down to enable capture of chromosomes by the microtubule-containing spindle apparatus. During anaphase, when chromosomes have separated, the nuclear envelope is reassembled around the forming daughter nuclei. How the nuclear envelope is sealed, and how this is coordinated with spindle disassembly, is largely unknown. Here we show that endosomal sorting complex required for transport (ESCRT)-III, previously found to promote membrane constriction and sealing during receptor sorting, virus budding, cytokinesis and plasma membrane repair, is transiently recruited to the reassembling nuclear envelope during late anaphase. ESCRT-III and its regulatory AAA (ATPase associated with diverse cellular activities) ATPase VPS4 are specifically recruited by the ESCRT-III-like protein CHMP7 to sites where the reforming nuclear envelope engulfs spindle microtubules. Subsequent association of another ESCRT-III-like protein, IST1, directly recruits the AAA ATPase spastin to sever microtubules. Disrupting spastin function impairs spindle disassembly and results in extended localization of ESCRT-III at the nuclear envelope. Interference with ESCRT-III functions in anaphase is accompanied by delayed microtubule disassembly, compromised nuclear integrity and the appearance of DNA damage foci in subsequent interphase. We propose that ESCRT-III, VPS4 and spastin cooperate to coordinate nuclear envelope sealing and spindle disassembly at nuclear envelope-microtubule intersection sites during mitotic exit to ensure nuclear integrity and genome safeguarding, with a striking mechanistic parallel to cytokinetic abscission.


Assuntos
Adenosina Trifosfatases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fusão de Membrana , Membrana Nuclear/metabolismo , Fuso Acromático/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Anáfase , Pontos de Checagem do Ciclo Celular , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Humanos , Microtúbulos/metabolismo , Espastina , ATPases Vacuolares Próton-Translocadoras/metabolismo
5.
Tissue Eng Part C Methods ; 18(4): 283-92, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22070632

RESUMO

Adult mesenchymal stromal/stem cells (MSCs) are a valuable source of multipotent progenitors for tissue engineering and regenerative medicine, but may require to be genetically modified to widen their efficacy in therapeutic applications. For example, overexpression of the angiogenic factor vascular endothelial growth factor (VEGF) at controlled levels is an attractive strategy to overcome the crucial bottleneck of graft vascularization and to avoid aberrant vascular growth. Since the regenerative potential of MSCs is rapidly lost during in vitro expansion, we sought to develop an optimized technique to achieve high-efficiency retroviral vector transduction of MSCs derived from both adipose tissue (adipose stromal cells, ASCs) or bone marrow (BMSCs) and rapidly select cells expressing desired levels of VEGF with minimal in vitro expansion. The proliferative peak of freshly isolated human ASCs and BMSCs was reached 4 and 6 days after plating, respectively. By performing retroviral vector transduction at this time point, >90% efficiency was routinely achieved before the first passage. MSCs were transduced with vectors expressing rat VEGF(164) quantitatively linked to a syngenic cell surface marker (truncated rat CD8). Retroviral transduction and VEGF expression did not affect MSC phenotype nor impair their in vitro proliferation and differentiation potential. Transgene expression was also maintained during in vitro differentiation. Furthermore, three subpopulations of transduced BMSCs homogeneously producing specific low, medium, and high VEGF doses could be prospectively isolated by flow cytometry based on the intensity of their CD8 expression already at the first passage. In conclusion, this optimized platform allowed the generation of populations of genetically modified MSCs, expressing specific levels of a therapeutic transgene, already at the first passage, thereby minimizing in vitro expansion and loss of regenerative potential.


Assuntos
Células-Tronco Adultas/citologia , Separação Celular/métodos , Citometria de Fluxo/métodos , Células-Tronco Mesenquimais/citologia , Transdução Genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Vetores Genéticos/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Retroviridae/genética , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA