Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(5): 2122-2135, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36782060

RESUMO

MYT1L is an autism spectrum disorder (ASD)-associated transcription factor that is expressed in virtually all neurons throughout life. How MYT1L mutations cause neurological phenotypes and whether they can be targeted remains enigmatic. Here, we examine the effects of MYT1L deficiency in human neurons and mice. Mutant mice exhibit neurodevelopmental delays with thinner cortices, behavioural phenotypes, and gene expression changes that resemble those of ASD patients. MYT1L target genes, including WNT and NOTCH, are activated upon MYT1L depletion and their chemical inhibition can rescue delayed neurogenesis in vitro. MYT1L deficiency also causes upregulation of the main cardiac sodium channel, SCN5A, and neuronal hyperactivity, which could be restored by shRNA-mediated knockdown of SCN5A or MYT1L overexpression in postmitotic neurons. Acute application of the sodium channel blocker, lamotrigine, also rescued electrophysiological defects in vitro and behaviour phenotypes in vivo. Hence, MYT1L mutation causes both developmental and postmitotic neurological defects. However, acute intervention can normalise resulting electrophysiological and behavioural phenotypes in adulthood.


Assuntos
Transtorno do Espectro Autista , Animais , Humanos , Camundongos , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Haploinsuficiência/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fenótipo , Fatores de Transcrição/genética
2.
J Immunol ; 206(8): 1697-1708, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33731337

RESUMO

The prime function of proteasomes is the control of protein homeostasis in cells (i.e., the removal of proteins that are not properly folded, damaged by stress conditions like reactive oxygen species formation, or degraded on the basis of regular protein turnover). During viral infection, the standard proteasome is replaced by the so-called immunoproteasome (IP) in an IFN-γ-dependent manner. It has been proposed that the IP is required to protect cell viability under conditions of IFN-induced oxidative stress. In this study, we investigated the requirement for IP to cope with the enhanced need for protein degradation during lymphocytic choriomeningitis virus (LCMV) infection in mice lacking the IP subunit LMP7. We found that IP are upregulated in the liver but not in the spleen during LCMV infection, although the total proteasome content was not altered. The expression of standard proteasome subunits is not induced in LMP7-deficient mice, indicating that enhanced proteasomal activity is not required during viral infection. Furthermore, ubiquitin accumulation, apoptosis induction, and viral titers were similar in LCMV-infected mice lacking LMP7 compared with wild-type mice. Taken together, these data indicate that the IP is not required to regulate protein homeostasis during LCMV infection.


Assuntos
Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfócitos T/imunologia , Animais , Células Cultivadas , Homeostase , Interferon gama/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...