Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Infect Dis ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421006

RESUMO

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to severe disease with increased morbidity and mortality among certain risk groups. The presence of autoantibodies against type I interferons (aIFN-Abs) is one mechanism that contributes to severe coronavirus disease 2019 (COVID-19). METHODS: This study aimed to investigate the presence of aIFN-Abs in relation to the soluble proteome, circulating immune cell numbers, and cellular phenotypes, as well as development of adaptive immunity. RESULTS: aIFN-Abs were more prevalent in critical compared to severe COVID-19 but largely absent in the other viral and bacterial infections studied here. The antibody and T-cell response to SARS-CoV-2 remained largely unaffected by the presence aIFN-Abs. Similarly, the inflammatory response in COVID-19 was comparable in individuals with and without aIFN-Abs. Instead, presence of aIFN-Abs had an impact on cellular immune system composition and skewing of cellular immune pathways. CONCLUSIONS: Our data suggest that aIFN-Abs do not significantly influence development of adaptive immunity but covary with alterations in immune cell numbers.

2.
Virus Res ; 339: 199271, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37979658

RESUMO

The integrated stress response (ISR) is a eukaryotic cell pathway that triggers translational arrest and the formation of stress granules (SGs) in response to various stress signals, including those caused by viral infections. The SARS-CoV-2 nucleocapsid protein has been shown to disrupt SGs, but SARS-CoV-2 interactions with other components of the pathway remains poorly characterized. Here, we show that SARS-CoV-2 infection triggers the ISR through activation of the eIF2α-kinase PKR while inhibiting a variety of downstream effects. In line with previous studies, SG formation was efficiently inhibited and the induced eIF2α phosphorylation only minimally contributed to the translational arrest observed in infected cells. Despite ISR activation and translational arrest, expression of the stress-responsive transcription factors ATF4 and CHOP was not induced in SARS-CoV-2 infected cells. Finally, we found variant-specific differences in the activation of the ISR between ancestral SARS-CoV-2 and the Delta and Omicron BA.1 variants in that Delta infection induced weaker PKR activation while Omicron infection induced higher levels of p-eIF2α, and greatly increased SG formation compared to the other variants. Our results suggest that different SARS-CoV-2 variants can affect normal cell functions differently, which can have an impact on pathogenesis and treatment strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Estresse Fisiológico , eIF-2 Quinase , Humanos , COVID-19/virologia , Fosforilação , eIF-2 Quinase/metabolismo
3.
Nat Commun ; 14(1): 5921, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37739942

RESUMO

COVID-19 is characterised by systemic immunological perturbations in the human body, which can lead to multi-organ damage. Many of these processes are considered to be mediated by the blood. Therefore, to better understand the systemic host response to SARS-CoV-2 infection, we performed systematic analyses of the circulating, soluble proteins in the blood through global proteomics by mass-spectrometry (MS) proteomics. Here, we show that a large part of the soluble blood proteome is altered in COVID-19, among them elevated levels of interferon-induced and proteasomal proteins. Some proteins that have alternating levels in human cells after a SARS-CoV-2 infection in vitro and in different organs of COVID-19 patients are deregulated in the blood, suggesting shared infection-related changes.The availability of different public proteomic resources on soluble blood proteome alterations leaves uncertainty about the change of a given protein during COVID-19. Hence, we performed a systematic review and meta-analysis of MS global proteomics studies of soluble blood proteomes, including up to 1706 individuals (1039 COVID-19 patients), to provide concluding estimates for the alteration of 1517 soluble blood proteins in COVID-19. Finally, based on the meta-analysis we developed CoViMAPP, an open-access resource for effect sizes of alterations and diagnostic potential of soluble blood proteins in COVID-19, which is publicly available for the research, clinical, and academic community.


Assuntos
COVID-19 , Humanos , Proteoma , Proteômica , SARS-CoV-2 , Citoplasma
4.
Cell Rep ; 42(8): 112835, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37478010

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates in human cells by interacting with host factors following infection. To understand the virus and host interactome proximity, we introduce a super-resolution proximity labeling (SR-PL) method with a "plug-and-playable" PL enzyme, TurboID-GBP (GFP-binding nanobody protein), and we apply it for interactome mapping of SARS-CoV-2 ORF3a and membrane protein (M), which generates highly perturbed endoplasmic reticulum (ER) structures. Through SR-PL analysis of the biotinylated interactome, 224 and 272 peptides are robustly identified as ORF3a and M interactomes, respectively. Within the ORF3a interactome, RNF5 co-localizes with ORF3a and generates ubiquitin modifications of ORF3a that can be involved in protein degradation. We also observe that the SARS-CoV-2 infection rate is efficiently reduced by the overexpression of RNF5 in host cells. The interactome data obtained using the SR-PL method are presented at https://sarscov2.spatiomics.org. We hope that our method will contribute to revealing virus-host interactions of other viruses in an efficient manner.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Antivirais/metabolismo , Proteínas de Membrana/metabolismo , Retículo Endoplasmático/metabolismo
5.
Nat Commun ; 14(1): 2164, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061513

RESUMO

Effective humoral immune responses require well-orchestrated B and T follicular helper (Tfh) cell interactions. Whether these interactions are impaired and associated with COVID-19 disease severity is unclear. Here, longitudinal blood samples across COVID-19 disease severity are analysed. We find that during acute infection SARS-CoV-2-specific circulating Tfh (cTfh) cells expand with disease severity. SARS-CoV-2-specific cTfh cell frequencies correlate with plasmablast frequencies and SARS-CoV-2 antibody titers, avidity and neutralization. Furthermore, cTfh cells but not other memory CD4 T cells, from severe patients better induce plasmablast differentiation and antibody production compared to cTfh cells from mild patients. However, virus-specific cTfh cell development is delayed in patients that display or later develop severe disease compared to those with mild disease, which correlates with delayed induction of high-avidity neutralizing antibodies. Our study suggests that impaired generation of functional virus-specific cTfh cells delays high-quality antibody production at an early stage, potentially enabling progression to severe disease.


Assuntos
COVID-19 , Linfócitos T Auxiliares-Indutores , Humanos , Células T Auxiliares Foliculares , SARS-CoV-2 , Plasmócitos
6.
Nat Commun ; 14(1): 1577, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949041

RESUMO

Vaccination offers protection against severe COVID-19 caused by SARS-CoV-2 omicron but is less effective against infection. Characteristics such as serum antibody titer correlation to protection, viral abundance and clearance of omicron infection in vaccinated individuals are scarce. We present a 4-week twice-weekly SARS-CoV-2 qPCR screening in 368 triple vaccinated healthcare workers. Spike-specific IgG levels, neutralization titers and mucosal spike-specific IgA-levels were determined at study start and qPCR-positive participants were sampled repeatedly for two weeks. 81 (cumulative incidence 22%) BA.1, BA.1.1 and BA.2 infections were detected. High serum antibody titers are shown to be protective against infection (p < 0.01), linked to reduced viral load (p < 0.01) and time to viral clearance (p < 0.05). Pre-omicron SARS-CoV-2 infection is independently associated to increased protection against omicron, largely mediated by mucosal spike specific IgA responses (nested models lr test p = 0.02 and 0.008). Only 10% of infected participants remain asymptomatic through the course of their infection. We demonstrate that high levels of vaccine-induced spike-specific WT antibodies are linked to increased protection against infection and to reduced viral load if infected, and suggest that the additional protection offered by pre-omicron SARS-CoV-2 infection largely is mediated by mucosal spike-specific IgA.


Assuntos
Infecções Irruptivas , COVID-19 , Humanos , Carga Viral , COVID-19/prevenção & controle , SARS-CoV-2 , Pessoal de Saúde , Imunoglobulina A , Anticorpos Antivirais , Anticorpos Neutralizantes
7.
EMBO Mol Med ; 14(8): e15230, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35781796

RESUMO

The recent emergence of multiple SARS-CoV-2 variants has caused considerable concern due to both reduced vaccine efficacy and escape from neutralizing antibody therapeutics. It is, therefore, paramount to develop therapeutic strategies that inhibit all known and future SARS-CoV-2 variants. Here, we report that all SARS-CoV-2 variants analyzed, including variants of concern (VOC) Alpha, Beta, Gamma, Delta, and Omicron, exhibit enhanced binding affinity to clinical grade and phase 2 tested recombinant human soluble ACE2 (APN01). Importantly, soluble ACE2 neutralized infection of VeroE6 cells and human lung epithelial cells by all current VOC strains with markedly enhanced potency when compared to reference SARS-CoV-2 isolates. Effective inhibition of infections with SARS-CoV-2 variants was validated and confirmed in two independent laboratories. These data show that SARS-CoV-2 variants that have emerged around the world, including current VOC and several variants of interest, can be inhibited by soluble ACE2, providing proof of principle of a pan-SARS-CoV-2 therapeutic.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2
9.
J Clin Immunol ; 42(6): 1130-1136, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35538387

RESUMO

Immunodeficient individuals often rely on donor-derived immunoglobulin (Ig) replacement therapy (IGRT) to prevent infections. The passive immunity obtained by IGRT is limited and reflects the state of immunity in the plasma donor population at the time of donation. The objective of the current study was to describe how the potential of passive immunity to SARS-CoV-2 in commercial off-the-shelf Ig products used for IGRT has evolved during the pandemic. Samples were collected from all consecutive Ig batches (n = 60) from three Ig producers used at the Immunodeficiency Unit at Karolinska University Hospital from the start of the SARS-CoV-2 pandemic until January 2022. SARS-CoV-2 antibody concentrations and neutralizing capacity were assessed in all samples. In vivo relevance was assessed by sampling patients with XLA (n = 4), lacking endogenous immunoglobulin synthesis and on continuous Ig substitution, for plasma SARS-CoV-2 antibody concentration. SARS-CoV-2 antibody concentrations in commercial Ig products increased over time but remained inconsistently present. Moreover, Ig batches with high neutralizing capacity towards the Wuhan-strain of SARS-CoV-2 had 32-fold lower activity against the Omicron variant. Despite increasing SARS-CoV-2 antibody concentrations in commercial Ig products, four XLA patients on IGRT had relatively low plasma concentrations of SARS-CoV-2 antibodies with no potential to neutralize the Omicron variant in vitro. In line with this observation, three out the four XLA patients had symptomatic COVID-19 during the Omicron wave. In conclusion, 2 years into the pandemic the amounts of antibodies to SARS-CoV-2 vary considerably among commercial Ig batches obtained from three commercial producers. Importantly, in batches with high concentrations of antibodies directed against the original virus strain, protective passive immunity to the Omicron variant appears to be insufficient.


Assuntos
COVID-19 , SARS-CoV-2 , Agamaglobulinemia , Anticorpos Neutralizantes , Anticorpos Antivirais , Doenças Genéticas Ligadas ao Cromossomo X , Humanos
10.
Clin Transl Immunology ; 11(4): e1388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444806

RESUMO

Objective: To determine the long-term impact of prior SARS-CoV-2 infection on immune responses after COVID-19 vaccination. Methods: Using longitudinally collected blood samples from the COMMUNITY study, we determined binding (WHO BAU mL-1) and neutralising antibody titres against ten SARS-CoV-2 variants over 7 months following BNT162b2 in SARS-CoV-2-recovered (n = 118) and SARS-CoV-2-naïve (n = 289) healthcare workers with confirmed prior SARS-CoV-2 infection. A smaller group with (n = 47) and without (n = 60) confirmed prior SARS-CoV-2 infection receiving ChAdOx1 nCoV-19 was followed for 3 months. SARS-CoV-2-specific memory T-cell responses were investigated in a subset of SARS-CoV-2-naïve and SARS-CoV-2-recovered vaccinees. Results: Vaccination with both vaccine platforms resulted in substantially enhanced T-cell responses, anti-spike IgG responses and neutralising antibodies effective against ten SARS-CoV-2 variants in SARS-CoV-2-recovered participants as compared to SARS-CoV-2-naïve participants. The enhanced immune responses sustained over 7 months following vaccination. Conclusion: These findings imply that prior SARS-CoV-2 infection should be taken into consideration when planning booster doses and design of current and future COVID-19 vaccine programmes.

11.
Immun Inflamm Dis ; 10(4): e595, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35349756

RESUMO

BACKGROUND: Cellular immune memory responses post coronavirus disease 2019 (COVID-19) have been difficult to assess due to the risks of contaminating the immune response readout with memory responses stemming from previous exposure to endemic coronaviruses. The work herein presents a large-scale long-term follow-up study investigating the correlation between symptomology and cellular immune responses four to five months post seroconversion based on a unique severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific peptide pool that contains no overlapping peptides with endemic human coronaviruses. METHODS: Peptide stimulated memory T cell responses were assessed with dual interferon-gamma (IFNγ) and interleukin (IL)-2 Fluorospot. Serological analyses were performed using a multiplex antigen bead array. RESULTS: Our work demonstrates that long-term SARS-CoV-2-specific memory T cell responses feature dual IFNγ and IL-2 responses, whereas cross-reactive memory T cell responses primarily generate IFNγ in response to SARS-CoV-2 peptide stimulation. T cell responses correlated to long-term humoral immune responses. Disease severity as well as specific COVID-19 symptoms correlated with the magnitude of the SARS-CoV-2-specific memory T cell response four to five months post seroconversion. CONCLUSION: Using a large cohort and a SARS-CoV-2-specific peptide pool we were able to substantiate that initial disease severity and symptoms correlate with the magnitude of the SARS-CoV-2-specific memory T cell responses.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T CD4-Positivos , Seguimentos , Humanos , Imunidade Celular , Índice de Gravidade de Doença
12.
Vaccines (Basel) ; 10(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35334989

RESUMO

Heterologous primary immunization against SARS-CoV-2 is part of applied recommendations. However, little is known about duration of immune responses after heterologous vaccine regimens. To evaluate duration of immune responses after primary vaccination with homologous adeno-vectored ChAdOx1 nCoV-19 vaccine (ChAd) or heterologous ChAd/BNT162b2 mRNA vaccine (BNT), anti-spike-IgG and SARS-CoV-2 VOC-neutralizing antibody responses were measured in 354 healthcare workers (HCW) at 2 weeks, 3 months, 5 months and 6 months after the second vaccine dose. T-cell responses were investigated using a whole blood interferon gamma (IFN-γ) release assay 2 weeks and 3 months post second vaccine dose. Two hundred and ten HCW immunized with homologous BNT were enrolled for comparison of antibody responses. In study participants naïve to SARS-CoV-2 prior to vaccination, heterologous ChAd/BNT resulted in 6-fold higher peak anti-spike IgG antibody titers compared to homologous ChAd vaccination. The half-life of antibody titers was 3.1 months (95% CI 2.8-3.6) following homologous ChAd vaccination and 1.9 months (95% CI 1.7-2.1) after heterologous vaccination, reducing the GMT difference between the groups to 3-fold 6 months post vaccination. Peak T-cell responses were stronger in ChAd/BNT vaccinees, but no significant difference was observed 3 months post vaccination. SARS-CoV-2 infection prior to vaccination resulted in substantially higher peak GMTs and IFN-γ levels and enhanced SARS-CoV-2 specific antibody and T cell responses over time. Heterologous primary SARS-CoV-2 immunization with ChAd and BNT elicits a stronger initial immune response compared to homologous vaccination with ChAd. However, although the differences in humoral responses remain over 6 months, the difference in SARS-CoV-2 specific T cell responses are no longer significant three months after vaccination.

13.
Cell Rep ; 38(10): 110503, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235832

RESUMO

Natural killer (NK) cells are innate immune cells that contribute to host defense against virus infections. NK cells respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and are activated in patients with acute coronavirus disease 2019 (COVID-19). However, by which mechanisms NK cells detect SARS-CoV-2-infected cells remains largely unknown. Here, we show that the Non-structural protein 13 of SARS-CoV-2 encodes for a peptide that is presented by human leukocyte antigen E (HLA-E). In contrast with self-peptides, the viral peptide prevents binding of HLA-E to the inhibitory receptor NKG2A, thereby rendering target cells susceptible to NK cell attack. In line with these observations, NKG2A-expressing NK cells are particularly activated in patients with COVID-19 and proficiently limit SARS-CoV-2 replication in infected lung epithelial cells in vitro. Thus, these data suggest that a viral peptide presented by HLA-E abrogates inhibition of NKG2A+ NK cells, resulting in missing self-recognition.


Assuntos
COVID-19 , Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , Metiltransferases , Subfamília C de Receptores Semelhantes a Lectina de Células NK , RNA Helicases , SARS-CoV-2 , Proteínas não Estruturais Virais , COVID-19/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Matadoras Naturais/imunologia , Metiltransferases/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Peptídeos/metabolismo , RNA Helicases/imunologia , Proteínas não Estruturais Virais/imunologia , Antígenos HLA-E
14.
Science ; 375(6584): 1041-1047, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35143256

RESUMO

Heterologous prime-boost immunization strategies have the potential to augment COVID-19 vaccine efficacy. We longitudinally profiled severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-specific serological and memory B cell (MBC) responses in individuals who received either homologous (ChAdOx1:ChAdOx1) or heterologous (ChAdOx1:mRNA-1273) prime-boost vaccination. Heterologous messenger RNA (mRNA) booster immunization induced higher serum neutralizing antibody and MBC responses against SARS-CoV-2 variants of concern (VOCs) compared with that of homologous ChAdOx1 boosting. Specificity mapping of circulating B cells revealed that mRNA-1273 boost immunofocused ChAdOx1-primed responses onto epitopes expressed on prefusion-stabilized S. Monoclonal antibodies isolated from mRNA-1273-boosted participants displayed overall higher binding affinities and increased breadth of reactivity against VOCs relative to those isolated from ChAdOx1-boosted individuals. Overall, the results provide molecular insight into the enhanced quality of the B cell response induced after heterologous mRNA booster vaccination.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , ChAdOx1 nCoV-19/imunologia , Células B de Memória/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/administração & dosagem , Adulto , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Especificidade de Anticorpos , ChAdOx1 nCoV-19/administração & dosagem , Feminino , Humanos , Esquemas de Imunização , Imunização Secundária , Imunogenicidade da Vacina , Masculino , Pessoa de Meia-Idade , Conformação Proteica , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química
15.
PLoS One ; 17(1): e0262169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35020778

RESUMO

Current SARS-CoV-2 serological assays generate discrepant results, and the longitudinal characteristics of antibodies targeting various antigens after asymptomatic to mild COVID-19 are yet to be established. This longitudinal cohort study including 1965 healthcare workers, of which 381 participants exhibited antibodies against the SARS-CoV-2 spike antigen at study inclusion, reveal that these antibodies remain detectable in most participants, 96%, at least four months post infection, despite having had no or mild symptoms. Virus neutralization capacity was confirmed by microneutralization assay in 91% of study participants at least four months post infection. Contrary to antibodies targeting the spike protein, antibodies against the nucleocapsid protein were only detected in 80% of previously anti-nucleocapsid IgG positive healthcare workers. Both anti-spike and anti-nucleocapsid IgG levels were significantly higher in previously hospitalized COVID-19 patients four months post infection than in healthcare workers four months post infection (p = 2*10-23 and 2*10-13 respectively). Although the magnitude of humoral response was associated with disease severity, our findings support a durable and functional humoral response after SARS-CoV-2 infection even after no or mild symptoms. We further demonstrate differences in antibody kinetics depending on the antigen, arguing against the use of the nucleocapsid protein as target antigen in population-based SARS-CoV-2 serological surveys.


Assuntos
COVID-19/patologia , Imunidade Humoral , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Infecções Assintomáticas/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Feminino , Pessoal de Saúde , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Nucleocapsídeo/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia
16.
N Biotechnol ; 66: 46-52, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34628049

RESUMO

Highly accurate serological tests are key to assessing the prevalence of SARS-CoV-2 antibodies and the level of immunity in the population. This is important to predict the current and future status of the pandemic. With the recent emergence of new and more infectious SARS-CoV-2 variants, assays allowing for high throughput analysis of antibodies able to neutralize SARS-CoV-2 become even more important. Here, we report the development and validation of a robust, high throughput method, which enables the assessment of antibodies inhibiting the binding between the SARS-CoV-2 spike protein and angiotensin converting enzyme 2 (ACE2). The assay uses recombinantly produced spike-f and ACE2 and is performed in a bead array format, which allows analysis of up to 384 samples in parallel per instrument over seven hours, demanding only one hour of manual handling. The method is compared to a microneutralization assay utilising live SARS-CoV-2 and is shown to deliver highly correlating data. Further, a comparison with a serological method that measures all antibodies recognizing the spike protein shows that this type of assessment provides important insights into the neutralizing efficiency of the antibodies, especially for individuals with low antibody levels. This method can be an important and valuable tool for large-scale assessment of antibody-based neutralization, including neutralization of new spike variants that might emerge.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , Ensaios de Triagem em Larga Escala , Humanos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/imunologia
17.
Clin Transl Immunology ; 10(7): e1306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257967

RESUMO

OBJECTIVES: Humoral and cellular immunity to SARS-CoV-2 following COVID-19 will likely contribute to protection from reinfection or severe disease. It is therefore important to characterise the initiation and persistence of adaptive immunity to SARS-CoV-2 amidst the ongoing pandemic. METHODS: Here, we conducted a longitudinal study on hospitalised moderate and severe COVID-19 patients from the acute phase of disease into convalescence at 5 and 9 months post-symptom onset. Utilising flow cytometry, serological assays as well as B cell and T cell FluoroSpot assays, we assessed the magnitude and specificity of humoral and cellular immune responses during and after human SARS-CoV-2 infection. RESULTS: During acute COVID-19, we observed an increase in germinal centre activity, a substantial expansion of antibody-secreting cells and the generation of SARS-CoV-2-neutralising antibodies. Despite gradually decreasing antibody levels, we show persistent, neutralising antibody titres as well as robust specific memory B cell responses and polyfunctional T cell responses at 5 and 9 months after symptom onset in both moderate and severe COVID-19 patients. CONCLUSION: Our findings describe the initiation and, importantly, persistence of cellular and humoral SARS-CoV-2-specific immunological memory in hospitalised COVID-19 patients long after recovery, likely contributing towards protection against reinfection.

19.
BMC Infect Dis ; 21(1): 494, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044758

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic. The understanding of the transmission and the duration of viral shedding in SARS-CoV-2 infection is still limited. OBJECTIVES: To assess the timeframe and potential risk of SARS-CoV-2 transmission from hospitalized COVID-19 patients in relation to antibody response. METHOD: We performed a cross-sectional study of 36 COVID-19 patients hospitalized at Karolinska University Hospital. Patients with more than 8 days of symptom duration were sampled from airways, for PCR analysis of SARS-CoV-2 RNA and in vitro culture of replicating virus. Serum SARS-CoV-2-specific immunoglobulin G (IgG) and neutralizing antibodies titers were assessed by immunofluorescence assay (IFA) and microneutralization assay. RESULTS: SARS-CoV-2 RNA was detected in airway samples in 23 patients (symptom duration median 15 days, range 9-53 days), whereas 13 patients were SARS-CoV-2 RNA negative (symptom duration median 21 days, range 10-37 days). Replicating virus was detected in samples from 4 patients at 9-16 days. All but two patients had detectable levels of SARS-CoV-2-specific IgG in serum, and SARS-CoV-2 neutralizing antibodies were detected in 33 out of 36 patients. Total SARS-CoV-2-specific IgG titers and neutralizing antibody titers were positively correlated. High levels of both total IgG and neutralizing antibody titers were observed in patients sampled later after symptom onset and in patients where replicating virus could not be detected. CONCLUSIONS: Our data suggest that the presence of SARS-Cov-2 specific antibodies in serum may indicate a lower risk of shedding infectious SARS-CoV-2 by hospitalized COVID-19 patients.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/virologia , SARS-CoV-2/imunologia , Eliminação de Partículas Virais , Adulto , Idoso , Anticorpos Neutralizantes/sangue , COVID-19/sangue , COVID-19/imunologia , Teste Sorológico para COVID-19/métodos , Estudos Transversais , Feminino , Hospitalização , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Pandemias , Reação em Cadeia da Polimerase/métodos , RNA Viral/análise , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Escarro/virologia
20.
Cell Rep Med ; 2(3): 100220, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33763658

RESUMO

Hantaviruses are zoonotic RNA viruses that cause severe acute disease in humans. Infected individuals have strong inflammatory responses that likely cause immunopathology. Here, we studied the response of mucosal-associated invariant T (MAIT) cells in peripheral blood of individuals with hemorrhagic fever with renal syndrome (HFRS) caused by Puumala orthohantavirus, a hantavirus endemic in Europe. We show that MAIT cell levels decrease in the blood during HFRS and that residual MAIT cells are highly activated. This activation correlates with HFRS severity markers. In vitro activation of MAIT cells by hantavirus-exposed antigen-presenting cells is dependent on type I interferons (IFNs) and independent of interleukin-18 (IL-18). These findings highlight the role of type I IFNs in virus-driven MAIT cell activation and suggest a potential role of MAIT cells in the disease pathogenesis of viral infections.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Infecções por Hantavirus/imunologia , Febre Hemorrágica com Síndrome Renal/imunologia , Ativação Linfocitária , Células T Invariantes Associadas à Mucosa/imunologia , Virus Puumala/patogenicidade , Adulto , Anticorpos Antivirais/sangue , Células Apresentadoras de Antígenos/virologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Progressão da Doença , Células Endoteliais/imunologia , Células Endoteliais/virologia , Feminino , Regulação da Expressão Gênica , Infecções por Hantavirus/genética , Infecções por Hantavirus/patologia , Infecções por Hantavirus/virologia , Febre Hemorrágica com Síndrome Renal/genética , Febre Hemorrágica com Síndrome Renal/patologia , Febre Hemorrágica com Síndrome Renal/virologia , Humanos , Imunofenotipagem , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/virologia , Células T Invariantes Associadas à Mucosa/virologia , Virus Puumala/imunologia , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...