Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 23(4)2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29669998

RESUMO

Hydrogels are of keen interest for a wide range of medical and biotechnological applications including as 3D substrate structures for the detection of proteins, nucleic acids, and cells. Hydrogel parameters such as polymer wt % and crosslink density are typically altered for a specific application; now, fluorescence can be incorporated into such criteria by specific macromonomer selection. Intrinsic fluorescence was observed at λmax 445 nm from hydrogels polymerized from lysine and aldehyde- terminated poly(ethylene glycol) macromonomers upon excitation with visible light. The hydrogel's photochemical properties are consistent with formation of a nitrone functionality. Printed hydrogels of 150 µm were used to detect individual cell adherence via a decreased in fluorescence. The use of such intrinsically fluorescent hydrogels as a platform for cell sorting and detection expands the current repertoire of tools available.


Assuntos
Hidrogéis/química , Hidrogéis/síntese química , Análise de Célula Única/métodos , Fluorescência , Microscopia Confocal , Polietilenoglicóis/química , Soroalbumina Bovina/química , Espectrometria de Fluorescência
2.
Oncotarget ; 6(28): 26266-77, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26313006

RESUMO

Hepatocellular carcinoma (HCC) is a lethal malignancy with high mortality and poor prognosis. Oncogenic transcription factor Late SV40 Factor (LSF) plays an important role in promoting HCC. A small molecule inhibitor of LSF, Factor Quinolinone Inhibitor 1 (FQI1), significantly inhibited human HCC xenografts in nude mice without harming normal cells. Here we evaluated the efficacy of FQI1 and another inhibitor, FQI2, in inhibiting endogenous hepatocarcinogenesis. HCC was induced in a transgenic mouse with hepatocyte-specific overexpression of c-myc (Alb/c-myc) by injecting N-nitrosodiethylamine (DEN) followed by FQI1 or FQI2 treatment after tumor development. LSF inhibitors markedly decreased tumor burden in Alb/c-myc mice with a corresponding decrease in proliferation and angiogenesis. Interestingly, in vitro treatment of human HCC cells with LSF inhibitors resulted in mitotic arrest with an accompanying increase in CyclinB1. Inhibition of CyclinB1 induction by Cycloheximide or CDK1 activity by Roscovitine significantly prevented FQI-induced mitotic arrest. A significant induction of apoptosis was also observed upon treatment with FQI. These effects of LSF inhibition, mitotic arrest and induction of apoptosis by FQI1s provide multiple avenues by which these inhibitors eliminate HCC cells. LSF inhibitors might be highly potent and effective therapeutics for HCC either alone or in combination with currently existing therapies.


Assuntos
Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proteínas de Ligação a DNA/antagonistas & inibidores , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Quinolonas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Dietilnitrosamina , Relação Dose-Resposta a Droga , Genes myc , Predisposição Genética para Doença , Humanos , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos Transgênicos , Mitose/efeitos dos fármacos , Terapia de Alvo Molecular , Neovascularização Patológica , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fatores de Transcrição/metabolismo
3.
BMC Syst Biol ; 8: 7, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24444313

RESUMO

BACKGROUND: Genome-wide microarrays have been useful for predicting chemical-genetic interactions at the gene level. However, interpreting genome-wide microarray results can be overwhelming due to the vast output of gene expression data combined with off-target transcriptional responses many times induced by a drug treatment. This study demonstrates how experimental and computational methods can interact with each other, to arrive at more accurate predictions of drug-induced perturbations. We present a two-stage strategy that links microarray experimental testing and network training conditions to predict gene perturbations for a drug with a known mechanism of action in a well-studied organism. RESULTS: S. cerevisiae cells were treated with the antifungal, fluconazole, and expression profiling was conducted under different biological conditions using Affymetrix genome-wide microarrays. Transcripts were filtered with a formal network-based method, sparse simultaneous equation models and Lasso regression (SSEM-Lasso), under different network training conditions. Gene expression results were evaluated using both gene set and single gene target analyses, and the drug's transcriptional effects were narrowed first by pathway and then by individual genes. Variables included: (i) Testing conditions--exposure time and concentration and (ii) Network training conditions--training compendium modifications. Two analyses of SSEM-Lasso output--gene set and single gene--were conducted to gain a better understanding of how SSEM-Lasso predicts perturbation targets. CONCLUSIONS: This study demonstrates that genome-wide microarrays can be optimized using a two-stage strategy for a more in-depth understanding of how a cell manifests biological reactions to a drug treatment at the transcription level. Additionally, a more detailed understanding of how the statistical model, SSEM-Lasso, propagates perturbations through a network of gene regulatory interactions is achieved.


Assuntos
Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Antifúngicos/farmacologia , Fluconazol/farmacologia , Nocodazol/farmacologia , Transcriptoma/efeitos dos fármacos
4.
Proc Natl Acad Sci U S A ; 109(12): 4503-8, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22396589

RESUMO

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Despite the prevalence of HCC, there is no effective, systemic treatment. The transcription factor LSF is a promising protein target for chemotherapy; it is highly expressed in HCC patient samples and cell lines, and promotes oncogenesis in rodent xenograft models of HCC. Here, we identify small molecules that effectively inhibit LSF cellular activity. The lead compound, factor quinolinone inhibitor 1 (FQI1), inhibits LSF DNA-binding activity both in vitro, as determined by electrophoretic mobility shift assays, and in cells, as determined by ChIP. Consistent with such inhibition, FQI1 eliminates transcriptional stimulation of LSF-dependent reporter constructs. FQI1 also exhibits antiproliferative activity in multiple cell lines. In LSF-overexpressing cells, including HCC cells, cell death is rapidly induced; however, primary or immortalized hepatocytes are unaffected by treatment with FQI1. The highly concordant structure-activity relationship of a panel of 23 quinolinones strongly suggests that the growth inhibitory activity is due to a single biological target or family. Coupled with the striking agreement between the concentrations required for antiproliferative activity (GI(50)s) and for inhibition of LSF transactivation (IC(50)s), we conclude that LSF is the specific biological target of FQIs. Based on these in vitro results, we tested the efficacy of FQI1 in inhibiting HCC tumor growth in a mouse xenograft model. As a single agent, tumor growth was dramatically inhibited with no observable general tissue cytotoxicity. These findings support the further development of LSF inhibitors for cancer chemotherapy.


Assuntos
Benzodioxóis/farmacologia , Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Quinolonas/farmacologia , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Ensaios de Seleção de Medicamentos Antitumorais , Genes Reporter , Hepatócitos/citologia , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Químicos , Células NIH 3T3 , Transplante de Neoplasias , Oncogenes , Relação Estrutura-Atividade , Ativação Transcricional
5.
Proc Natl Acad Sci U S A ; 108(32): 13347-52, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21788508

RESUMO

Understanding the systemic biological pathways and the key cellular mechanisms that dictate disease states, drug response, and altered cellular function poses a significant challenge. Although high-throughput measurement techniques, such as transcriptional profiling, give some insight into the altered state of a cell, they fall far short of providing by themselves a complete picture. Some improvement can be made by using enrichment-based methods to, for example, organize biological data of this sort into collections of dysregulated pathways. However, such methods arguably are still limited to primarily a transcriptional view of the cell. Augmenting these methods still further with networks and additional -omics data has been found to yield pathways that play more fundamental roles. We propose a previously undescribed method for identification of such pathways that takes a more direct approach to the problem than any published to date. Our method, called latent pathway identification analysis (LPIA), looks for statistically significant evidence of dysregulation in a network of pathways constructed in a manner that implicitly links pathways through their common function in the cell. We describe the LPIA methodology and illustrate its effectiveness through analysis of data on (i) metastatic cancer progression, (ii) drug treatment in human lung carcinoma cells, and (iii) diagnosis of type 2 diabetes. With these analyses, we show that LPIA can successfully identify pathways whose perturbations have latent influences on the transcriptionally altered genes.


Assuntos
Fenômenos Biológicos/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Transcrição Gênica , Benzoquinonas/farmacologia , Diabetes Mellitus Tipo 2/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Lactamas Macrocíclicas/farmacologia , Masculino , Metástase Neoplásica , Neoplasias da Próstata/patologia , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...