Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057772

RESUMO

Disease co-occurrence in wildlife populations is common yet understudied. In the case of disease-caused mortality, the mortality attributed to one disease has the potential to buffer populations against subsequent alternative disease outbreaks by reducing populations and thus contacts needed to sustain disease transmission. However, substantial disease-driven population declines may also prevent populations from recovering, leading to localized extinctions. Hemorrhagic disease (HD), a vector-transmitted, viral disease in white-tailed deer (WTD), similar to chronic wasting disease (CWD), a prion disease, has increased in frequency and distribution in the United States. However, unlike CWD, which progresses slowly, HD can cause mortality only days after infection. Hemorrhagic disease outbreaks can result in substantial localized mortality events in WTD near vector habitats such as wetlands and may reduce local deer densities and consequent CWD transmission. The objective of our study was to evaluate the potential for HD outbreaks to buffer CWD risk where the diseases co-occur. Using an agent-based modeling approach, we found that frequent, intense HD outbreaks have the potential to mitigate CWD risk, especially if those outbreaks occur shortly after CWD introduction. However, HD outbreaks that do not result in substantial WTD mortality are unlikely to impact CWD or WTD population dynamics. Severe HD outbreaks may reduce CWD cases and could present an opportunity for managers to boost CWD control initiatives in a post-HD outbreak year.

2.
Pathogens ; 13(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38392876

RESUMO

Chronic wasting disease (CWD) is a prion disease affecting cervid species, both free-ranging and captive populations. As the geographic range continues to expand and disease prevalence continues to increase, CWD will have an impact on cervid populations, local economies, and ecosystem health. Mitigation of this "wicked" disease will require input from many different stakeholders including hunters, landowners, research biologists, wildlife managers, and others, working together. The NC1209 (North American interdisciplinary chronic wasting disease research consortium) is composed of scientists from different disciplines involved with investigating and managing CWD. Leveraging this broad breadth of expertise, the Consortium has created a state-of-the-science review of five key aspects of CWD, including current diagnostic capabilities for detecting prions, requirements for validating these diagnostics, the role of environmental transmission in CWD dynamics, and potential zoonotic risks associated with CWD. The goal of this review is to increase stakeholders', managers', and decision-makers' understanding of this disease informed by current scientific knowledge.

3.
J Wildl Dis ; 57(1): 82-93, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33635976

RESUMO

Epizootic hemorrhagic disease (EHD) is the most significant source of viral disease-related mortality in white-tailed deer (Odocoileus virginianus) in the US. Deer mortality from EHD has increased in the state of Michigan, US, since 2006, with the largest outbreak occurring in 2012. The 2012 outbreak provided an opportunity to evaluate how this disease affected EHD-related mortality in deer populations at a spatial scale typical of that expected for the greatest disease risk. Our objectives were to quantify the population impacts and spatial extent of EHD associated with areas of disease risk for deer populations and to determine how populations recovered over time following localized EHD impacts. We estimated the annual local abundance of deer for 5 yr immediately following a recent EHD outbreak. Because proximity to wetlands may affect EHD occurrence, we surveyed deer at varying distances (about 1 km and 5 km) from a riparian corridor to determine spatial variation in population impacts. Further, we assessed differences in deer abundance for sites affected and unaffected by EHD. Abundance estimates were lower along transects near the riparian corridor only in the affected area, reflecting EHD mortality associated with wetlands. The only change in abundance over time was a significant increase in the riparian strata in the EHD-affected site.


Assuntos
Cervos/virologia , Vírus da Doença Hemorrágica Epizoótica , Infecções por Reoviridae/veterinária , Animais , Michigan/epidemiologia , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/virologia
4.
Glob Chang Biol ; 26(7): 3799-3808, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32227543

RESUMO

Bluetongue virus and epizootic hemorrhagic disease (HD) virus are globally distributed, vector-borne viruses that infect and cause disease in domestic and wild ruminant species. The forces driving increases in resulting HD may be linked to weather conditions and increasing severity has been noted in northerly latitudes. We evaluated the role of drought severity in both space and time on changes in HD reports across the eastern United States for a recent 15 year period. The objectives of this study were to: (a) develop a spatiotemporal model to evaluate if drought severity explains changing patterns of HD presence; and (b) determine whether this potential risk factor varies in importance over the present range of HD in the eastern United States. Historic data (2000-2014) from an annual HD presence-absence survey conducted by the Southeastern Cooperative Wildlife Disease Study and from the United States Drought Monitor were used for this analysis. For every county in 23 states and for each of 15 years, data were based on reported drought status for August, wetland cover, the physiographic region, and the status of HD in the previous year. We used a generalized linear mixed model to explain HD presence and evaluated spatiotemporal predictors across the region. We found that drought severity was a significant predictor of HD presence and the significance of this relationship was dependent on latitude. In more northerly latitudes, where immunological naivety is most likely, we demonstrated the increasing strength of drought severity as a determinant of reported HD and established the importance of variation in drought severity as a risk factor over the present range of HD in the eastern United States. Our research provides spatially explicit evidence for the link between climate forces and emerging disease patterns across latitude for a globally distributed disease.


Assuntos
Vírus Bluetongue , Cervos , Vírus da Doença Hemorrágica Epizoótica , Infecções por Reoviridae , Animais , Secas , Estados Unidos
5.
Environ Mol Mutagen ; 60(2): 174-184, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30488609

RESUMO

Global DNA hypomethylation is proposed as a potential biomarker for cancer risk associated with genomic instability, which is an important factor in radiation-induced cancer. However, the associations among radiation exposure, changes in DNA methylation, and carcinogenesis are unclear. The aims of this study were (1) to examine whether low-level occupational radiation exposure induces genomic DNA hypomethylation; and (2) to determine the relationships between radiation exposure, genomic DNA hypomethylation and radiation-induced genomic instability (RIGI) in industrial radiographers. Genomic DNA methylation levels were measured in blood DNA from 40 radiographers and 28 controls using the LINE-1 pyrosequencing assay and the luminometric methylation assay. Further, the micronucleus-centromere assay was performed to measure aneuploidy of chromosomes 1 and 4 as a marker of delayed RIGI. Genomic DNA methylation levels were significantly lower in radiographers than those in controls. LINE-1 hypomethylation was not significantly correlated with recent 1-year, recent 3-year, or total cumulative radiation doses in radiographers; however, LINE-1 hypomethylation significantly correlated with the cumulative radiation dose without recent 3-year exposure data (D3dose, r = -0.39, P < 0.05). In addition, LINE-1 hypomethylation was a significant contributor to aneuploidy frequency by D3dose (F (2, 34) = 13.85, P < 0.001), in which a total of 45% of the variance in aneuploidy frequency was explained. Our results provide suggestive evidence regarding the delayed effects of low-dose occupational radiation exposure in radiographers and its association with LINE-1 hypomethylation; however, additional studies using more subjects are needed to fully understand the relationship between genomic DNA hypomethylation and RIGI. Environ. Mol. Mutagen. 60: 174-184, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Dano ao DNA/efeitos da radiação , Metilação de DNA/genética , Instabilidade Genômica/efeitos da radiação , Elementos Nucleotídeos Longos e Dispersos/efeitos da radiação , Adulto , Metilação de DNA/efeitos da radiação , Feminino , Humanos , Masculino , Testes para Micronúcleos , Pessoa de Meia-Idade , Exposição Ocupacional , Exposição à Radiação , Radiografia/efeitos adversos
6.
Environ Mol Mutagen ; 58(6): 423-433, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28543436

RESUMO

Allergic asthma remains an inadequately understood disease. In utero exposure to environmental tobacco smoke (ETS) has been identified as an environmental exposure that can increase an individual's asthma risk. To improve our understanding of asthma onset and development, we examined the effect of in utero ETS exposure on allergic disease susceptibility in an asthmatic phenotype using a house dust mite (HDM) allergen-induced murine model. Pregnant C57BL/6 mice were exposed to either filtered air or ETS during gestation, and their offspring were further exposed to HDM at 6-7 weeks old to induce allergic inflammation. Methylation in the promoter regions of allergic inflammation-related genes and genomic DNA was quantified. Exposure to HDM resulted in the onset of allergic lung inflammation, with an increased presence of inflammatory cells, Th2 cytokines (IL-4, IL-5, and IL-13), and airway remodeling. These asthmatic phenotypes were significantly enhanced when the mice had been exposed to in utero ETS. Furthermore, prenatal ETS exposure and subsequent HDM (ETS/HDM)-induced asthmatic phenotypes agree with methylation changes in the selected asthma-related genes, including IL-4, IL-5, IL-13, INF-γ, and FOXP3. Global DNA methylation was significantly lower in ETS/HDM-exposed mice than that of controls, which coincides with the results observed in lung, spleen, and blood DNAs. Prenatal ETS exposure resulted in a severe increase in allergic inflammatory responses after an HDM challenge, with corresponding methylation changes. Prenatal ETS exposure may influence developmental plasticity and result in altered epigenetic programming, leading to an increased susceptibility to asthma. Environ. Mol. Mutagen. 58:423-433, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Asma/genética , Metilação de DNA/genética , Hipersensibilidade/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Asma/complicações , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Citocinas/biossíntese , Suscetibilidade a Doenças , Epigênese Genética , Feminino , Hipersensibilidade/complicações , Pulmão/patologia , Camundongos Endogâmicos C57BL , Pneumonia/complicações , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Regiões Promotoras Genéticas/genética , Pyroglyphidae/fisiologia , Fatores de Risco , Baço/metabolismo
7.
PLoS One ; 10(7): e0133909, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26196382

RESUMO

Global hypomethylation in white blood cell (WBC) DNA has recently been proposed as a potential biomarker for determining cancer risk through genomic instability. However, the amplitude of the changes associated with age and the impacts of environmental factors on DNA methylation are unclear. In this study, we investigated the association of genomic hypomethylation with age, cigarette use, drinking status and the presence of centromere positive micronuclei (MNC+)-a biomarker for age-dependent genomic instability. Genomic hypomethylation of the repetitive element LINE-1 was measured in WBC DNA from 32 healthy male volunteers using the pyrosequencing assay. We also measured MNC+ with the micronucleus-centromere assay using a pan-centromeric probe. Possibly due to the small sample size and resulting low statistical power, smoking and drinking status had no significant effect on LINE-1 hypomethylation or the occurrence of MNC+. Consequently, we did not include them in further analyses. In contrast, LINE-1 hypomethylation and age significantly predicted MNC+; therefore, we examined whether LINE-1 hypomethylation plays a role in MNC+ formation by age, since genomic hypomethylation is associated with genomic instability. However, LINE-1 hypomethylation did not significantly mediate the effect of age on MNC+. Our data indicate that the repetitive element LINE-1 is demethylated with age and increasing MNC+ frequency, but additional studies are needed to fully understand the relation between genomic DNA hypomethylation, age and genomic instability.


Assuntos
Envelhecimento/genética , Centrômero/genética , Metilação de DNA , Instabilidade Genômica , Elementos Nucleotídeos Longos e Dispersos/genética , Linfócitos/metabolismo , Adulto , Consumo de Bebidas Alcoólicas , Núcleo Celular/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fumar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA