Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 115(18): 5383-91, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21329370

RESUMO

In this work we analyze how nuclear coherences modulate diagonal and off-diagonal peaks in two-dimensional electronic spectroscopy. 2D electronic spectra of pinacyanol chloride are measured with 8 fs pulses, which allows coherent excitation of the 1300 cm(-1) vibrational mode. The 2D spectrum reveals both diagonal and off-diagonal peaks related to the vibrational mode. On early time scales, up to 30 fs, coherent dynamics give rise to oscillations in the amplitudes, positions, and shapes of the peaks in the 2D spectrum. We find an anticorrelation between the amplitude and the diagonal width of the two diagonal peaks. The measured data are reproduced with a model incorporating a high frequency mode coupled to an electronic two-level-system. Our results show that these anticorrelated oscillations occur for vibrational wavepackets and not exclusively for electronic coherences as has been assumed previously.


Assuntos
Carbocianinas/química , Elétrons , Teoria Quântica , Fatores de Tempo , Vibração
2.
J Chem Phys ; 130(2): 024510, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19154041

RESUMO

We explore how the width of the three-pulse photon echo signal at long population times can be used to determine the strength of the system-bath interaction. Using simulation with finite pulses we show that a simple relation exist between the width of the echo signal, the coupling strength, and the pulse autocorrelation. The derived model is applied to Rhodamine 6G in alcoholic solution, a paradigm system for the study of solvation dynamics, and the results are compared to conventional methods. The independently determined coupling strength forms the basis for a computationally inexpensive route to determine the entire spectral density, the key parameter when considering system-bath interactions. Our method allows us to accurately estimate the relative amplitude of fast and slow components in the correlation function using only impulsive limit simulations. We show that the peak shift significantly overestimates the amplitude of the fastest decay component for our experimental data. Changing solvent from methanol to 1-hexanol we observe a narrowing of the width of the echo profile. The changes in the echo width allow us to estimate the changes of the coupling strength in various solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA