Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Brain ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667631

RESUMO

Recent longitudinal PET imaging studies have established methods to estimate the age at which amyloid becomes abnormal at the level of the individual. Here we recontextualized amyloid levels into the temporal domain to better understand the downstream Alzheimer's disease processes of tau neurofibrillary tangle (NFT) accumulation and cognitive decline. This cohort study included a total of 601 individuals from the Wisconsin Registry for Alzheimer's Prevention and Wisconsin Alzheimer's Disease Research Center that underwent amyloid and tau PET, longitudinal neuropsychological assessments, and met clinical criteria for three clinical diagnosis groups: cognitively unimpaired (CU; n=537); mild cognitive impairment (MCI; n=48); or dementia (n=16)). Cortical 11C-Pittsburgh compound B (PiB) distribution volume ratio (DVR) and sampled iterative local approximation were used to estimate amyloid positive (A+; global PiB DVR>1.16 equivalent to 17.1 Centiloids) onset age and years of A+ duration at tau PET (i.e., amyloid chronicity). Tau PET burden was quantified using 18F-MK-6240 standardized uptake value ratios (SUVRs; 70-90 min, inferior cerebellar gray matter reference region). Whole-brain and region-specific approaches were used to examine tau PET binding along the amyloid timeline and across the Alzheimer's disease clinical continuum. Voxel-wise 18F-MK-6240 analyses revealed that with each decade of A+, the spatial extent of measurable tau spread (i.e., progressed) from regions associated with early to late NFT tau stages. Regional analyses indicated that tau burden in the entorhinal cortex was detectable, on average, within ten years of A+ onset. Additionally, the entorhinal cortex was the region most sensitive to early amyloid pathology and clinical impairment in this predominantly preclinical sample. Among initially CU (n=472) individuals with longitudinal cognitive follow-up, mixed effects models showed significant linear and non-linear interactions of A+ duration and entorhinal tau on cognitive decline, suggesting a synergistic effect whereby greater A+ duration together with a higher entorhinal tau burden increases the likelihood of cognitive decline beyond their separable effects. Overall, the amyloid time framework enabled a spatiotemporal characterization of tau deposition patterns across the Alzheimer's disease continuum. This approach, which examined cross-sectional tau PET data along the amyloid timeline to make longitudinal disease-course inferences, demonstrated that A+ duration explains a considerable amount of variability in the magnitude and topography of tau spread, which largely recapitulated NFT staging observed in human neuropathological studies. By anchoring disease progression to the onset of amyloid, this study provides a temporal disease context which may help inform disease prognosis and timing windows for anti-amyloid therapies.

2.
Alzheimers Dement (Amst) ; 16(2): e12582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623384

RESUMO

INTRODUCTION: People with Down syndrome (DS) have a 75% to 90% lifetime risk of Alzheimer's disease (AD). AD pathology begins a decade or more prior to onset of clinical AD dementia in people with DS. It is not clear if plasma biomarkers of AD pathology are correlated with early cognitive and functional impairments in DS, and if these biomarkers could be used to track the early stages of AD in DS or to inform inclusion criteria for clinical AD treatment trials. METHODS: This large cross-sectional cohort study investigated the associations between plasma biomarkers of amyloid beta (Aß)42/40, total tau, and neurofilament light chain (NfL) and cognitive (episodic memory, visual-motor integration, and visuospatial abilities) and functional (adaptive behavior) impairments in 260 adults with DS without dementia (aged 25-81 years). RESULTS: In general linear models lower plasma Aß42/40 was related to lower visuospatial ability, higher total tau was related to lower episodic memory, and higher NfL was related to lower visuospatial ability and lower episodic memory. DISCUSSION: Plasma biomarkers may have utility in tracking AD pathology associated with early stages of cognitive decline in adults with DS, although associations were modest. Highlights: Plasma Alzheimer's disease (AD) biomarkers correlate with cognition prior to dementia in Down syndrome.Lower plasma amyloid beta 42/40 was related to lower visuospatial abilities.Higher plasma total tau and neurofilament light chain were associated with lower cognitive performance.Plasma biomarkers show potential for tracking early stages of AD symptomology.

3.
Lancet Neurol ; 23(5): 500-510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631766

RESUMO

BACKGROUND: In people with genetic forms of Alzheimer's disease, such as in Down syndrome and autosomal-dominant Alzheimer's disease, pathological changes specific to Alzheimer's disease (ie, accumulation of amyloid and tau) occur in the brain at a young age, when comorbidities related to ageing are not present. Studies including these cohorts could, therefore, improve our understanding of the early pathogenesis of Alzheimer's disease and be useful when designing preventive interventions targeted at disease pathology or when planning clinical trials. We compared the magnitude, spatial extent, and temporal ordering of tau spread in people with Down syndrome and autosomal-dominant Alzheimer's disease. METHODS: In this cross-sectional observational study, we included participants (aged ≥25 years) from two cohort studies. First, we collected data from the Dominantly Inherited Alzheimer's Network studies (DIAN-OBS and DIAN-TU), which include carriers of autosomal-dominant Alzheimer's disease genetic mutations and non-carrier familial controls recruited in Australia, Europe, and the USA between 2008 and 2022. Second, we collected data from the Alzheimer Biomarkers Consortium-Down Syndrome study, which includes people with Down syndrome and sibling controls recruited from the UK and USA between 2015 and 2021. Controls from the two studies were combined into a single group of familial controls. All participants had completed structural MRI and tau PET (18F-flortaucipir) imaging. We applied Gaussian mixture modelling to identify regions of high tau PET burden and regions with the earliest changes in tau binding for each cohort separately. We estimated regional tau PET burden as a function of cortical amyloid burden for both cohorts. Finally, we compared the temporal pattern of tau PET burden relative to that of amyloid. FINDINGS: We included 137 people with Down syndrome (mean age 38·5 years [SD 8·2], 74 [54%] male, and 63 [46%] female), 49 individuals with autosomal-dominant Alzheimer's disease (mean age 43·9 years [11·2], 22 [45%] male, and 27 [55%] female), and 85 familial controls, pooled from across both studies (mean age 41·5 years [12·1], 28 [33%] male, and 57 [67%] female), who satisfied the PET quality-control procedure for tau-PET imaging processing. 134 (98%) people with Down syndrome, 44 (90%) with autosomal-dominant Alzheimer's disease, and 77 (91%) controls also completed an amyloid PET scan within 3 years of tau PET imaging. Spatially, tau PET burden was observed most frequently in subcortical and medial temporal regions in people with Down syndrome, and within the medial temporal lobe in people with autosomal-dominant Alzheimer's disease. Across the brain, people with Down syndrome had greater concentrations of tau for a given level of amyloid compared with people with autosomal-dominant Alzheimer's disease. Temporally, increases in tau were more strongly associated with increases in amyloid for people with Down syndrome compared with autosomal-dominant Alzheimer's disease. INTERPRETATION: Although the general progression of amyloid followed by tau is similar for people Down syndrome and people with autosomal-dominant Alzheimer's disease, we found subtle differences in the spatial distribution, timing, and magnitude of the tau burden between these two cohorts. These differences might have important implications; differences in the temporal pattern of tau accumulation might influence the timing of drug administration in clinical trials, whereas differences in the spatial pattern and magnitude of tau burden might affect disease progression. FUNDING: None.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Síndrome de Down , Masculino , Feminino , Humanos , Adulto , Doença de Alzheimer/genética , Estudos Transversais , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Amiloide , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/patologia
4.
Alzheimers Dement ; 20(5): 3649-3656, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480678

RESUMO

Prior authorization criteria for Federal Drug Administration (FDA) approved immunotherapeutics, among the class of anti-amyloid monoclonal antibodies (mAbs), established by state drug formulary committees, are tailored for adults with late-onset Alzheimer's disease. This overlooks adults with Down syndrome (DS), who often experience dementia at a younger age and with different diagnostic assessment outcomes. This exclusion may deny DS adults access to potential disease-modifying treatments. To address this issue, an international expert panel convened to establish adaptations of prescribing criteria suitable for DS patients and parameters for access to Centers for Medicare & Medicaid Services (CMS) registries. The panel proposed mitigating disparities by modifying CMS and payer criteria to account for younger onset age, using alternative language and assessment instruments validated for cognitive decline in the DS population. The panel also recommended enhancing prescribing clinicians' diagnostic capabilities for DS and initiated awareness-raising activities within healthcare organizations. These efforts facilitated discussions with federal officials, aimed at achieving equity in access to anti-amyloid immunotherapeutics, with implications for national authorities worldwide evaluating these and other new disease-modifying therapeutics for Alzheimer's disease.


Assuntos
Síndrome de Down , Humanos , Estados Unidos , Doença de Alzheimer/tratamento farmacológico , Adulto , Anticorpos Monoclonais/uso terapêutico , Imunoterapia/métodos
5.
Alzheimers Dement ; 20(5): 3305-3321, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38539269

RESUMO

INTRODUCTION: Published norms are typically cross-sectional and often are not sensitive to preclinical cognitive changes due to dementia. We developed and validated demographically adjusted cross-sectional and longitudinal normative standards using harmonized outcomes from two Alzheimer's disease (AD) risk-enriched cohorts. METHODS: Data from the Wisconsin Registry for Alzheimer's Prevention and the Wisconsin Alzheimer's Disease Research Center were combined. Quantile regression was used to develop unconditional (cross-sectional) and conditional (longitudinal) normative standards for 18 outcomes using data from cognitively unimpaired participants (N = 1390; mean follow-up = 9.25 years). Validity analyses (N = 2456) examined relationships between percentile scores (centiles), consensus-based cognitive statuses, and AD biomarker levels. RESULTS: Unconditional and conditional centiles were lower in those with consensus-based impairment or biomarker positivity. Similarly, quantitative biomarker levels were higher in those whose centiles suggested decline. DISCUSSION: This study presents normative standards for cognitive measures sensitive to pre-clinical changes. Future directions will investigate potential clinical applications of longitudinal normative standards. HIGHLIGHTS: Quantile regression was used to construct longitudinal norms for cognitive tests. Poorer percentile scores were related to concurrent diagnosis and Alzheimer's disease biomarkers. A ShinyApp was built to display test scores and norms and flag low performance.


Assuntos
Doença de Alzheimer , Biomarcadores , Testes Neuropsicológicos , Humanos , Doença de Alzheimer/diagnóstico , Masculino , Idoso , Feminino , Testes Neuropsicológicos/normas , Testes Neuropsicológicos/estatística & dados numéricos , Estudos Longitudinais , Wisconsin , Estudos Transversais , Disfunção Cognitiva/diagnóstico , Estudos de Coortes , Cognição/fisiologia , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade
6.
Clin Chem ; 70(3): 538-550, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431278

RESUMO

BACKGROUND: The sensitivity of amyloid to pre-analytic factors complicates cerebrospinal fluid (CSF) diagnostics for Alzheimer disease. We report reliability and validity evidence for automated immunoassays from frozen and fresh CSF samples in an ongoing, single-site research program. METHODS: CSF samples were obtained from 2 Wisconsin cohorts (1256 measurements; 727 participants). Levels of amyloid beta 1-42 (Aß42), phosphorylated tau 181 (pTau181), and total tau (tTau) were obtained using an Elecsys cobas e 601 platform. Repeatability and fixed effects of storage tube type, extraction method, and freezing were assessed via mixed models. Concordance with amyloid positron emission tomography (PET) was investigated with 238 participants having a temporally proximal PET scan. RESULTS: Repeatability was high with intraclass correlation (ICC) ≥0.9, but tube type strongly affected measurements. Discriminative accuracy for PET amyloid positivity was strong across tube types (area under the curve [AUC]: Aß42, 0.87; pTau181Aß42 , 0.96), although optimal thresholds differed. CONCLUSIONS: Under real-world conditions, the Elecsys platform had high repeatability. However, strong effects of pre-analytic factors suggest caution in drawing longitudinal inferences.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Reprodutibilidade dos Testes , Proteínas tau/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
7.
Alzheimers Dement ; 20(4): 2670-2679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380866

RESUMO

INTRODUCTION: Late-onset Alzheimer's disease (LOAD) has a strong genetic component. Participants in Long-Life Family Study (LLFS) exhibit delayed onset of dementia, offering a unique opportunity to investigate LOAD genetics. METHODS: We conducted a whole genome sequence analysis of 3475 LLFS members. Genetic associations were examined in six independent studies (N = 14,260) with a wide range of LOAD risk. Association analysis in a sub-sample of the LLFS cohort (N = 1739) evaluated the association of LOAD variants with beta amyloid (Aß) levels. RESULTS: We identified several single nucleotide polymorphisms (SNPs) in tight linkage disequilibrium within the MTUS2 gene associated with LOAD (rs73154407, p = 7.6 × 10-9). Association of MTUS2 variants with LOAD was observed in the five independent studies and was significantly stronger within high levels of Aß42/40 ratio compared to lower amyloid. DISCUSSION: MTUS2 encodes a microtubule associated protein implicated in the development and function of the nervous system, making it a plausible candidate to investigate LOAD biology. HIGHLIGHTS: Long-Life Family Study (LLFS) families may harbor late onset Alzheimer's dementia (LOAD) variants. LLFS whole genome sequence analysis identified MTUS2 gene variants associated with LOAD. The observed LLFS variants generalized to cohorts with wide range of LOAD risk. The association of MTUS2 with LOAD was stronger within high levels of beta amyloid. Our results provide evidence for MTUS2 gene as a novel LOAD candidate locus.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Proteínas Associadas aos Microtúbulos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência
8.
Alzheimers Dement ; 20(1): 366-375, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37641428

RESUMO

INTRODUCTION: Down syndrome (DS) is a genetic cause of early-onset Alzheimer's disease (AD). The National Institute on Aging-Alzheimer's Association AT(N) Research Framework is a staging model for AD biomarkers but has not been assessed in DS. METHOD: Data are from the Alzheimer's Biomarker Consortium-Down Syndrome. Positron emission tomography (PET) amyloid beta (Aß; 15 mCi of [11 C]Pittsburgh compound B) and tau (10 mCi of [18 F]AV-1451) were used to classify amyloid (A) -/+ and tau (T) +/-. Hippocampal volume classified neurodegeneration (N) -/+. The modified Cued Recall Test assessed episodic memory. RESULTS: Analyses included 162 adults with DS (aged M = 38.84 years, standard deviation = 8.41). Overall, 69.8% of participants were classified as A-/T-/(N)-, 11.1% were A+/T-/(N)-, 5.6% were A+/T+/(N)-, and 9.3% were A+/T+/(N)+. Participants deemed cognitively stable were most likely to be A-T-(N)- and A+T-(N)-. Tau PET (T+) most closely aligning with memory impairment and AD clinical status. DISCUSSION: Findings add to understanding of AT(N) biomarker profiles in DS. HIGHLIGHTS: Overall, 69.8% of adults with Down syndrome (DS) aged 25 to 61 years were classified as amyloid (A)-/tau (T)-/neurodegeneration (N)-, 11.1% were A+/T-/(N)-, 5.6% were A+/T+/(N)-, and 9.3% were A+/T+/(N)+. The AT(N) profiles were associated with clinical Alzheimer's disease (AD) status and with memory performance, with the presence of T+ aligned with AD clinical symptomology. Findings inform models for predicting the transition to the prodromal stage of AD in DS.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Síndrome de Down , Adulto , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/complicações , Síndrome de Down/diagnóstico por imagem , Síndrome de Down/complicações , Peptídeos beta-Amiloides , Proteínas tau , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/complicações
9.
Alzheimers Dement ; 20(1): 388-398, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37641577

RESUMO

INTRODUCTION: Almost all individuals with Down syndrome (DS) will develop neuropathological features of Alzheimer's disease (AD). Understanding AD biomarker trajectories is necessary for DS-specific clinical interventions and interpretation of drug-related changes in the disease trajectory. METHODS: A total of 177 adults with DS from the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) underwent positron emission tomography (PET) and MR imaging. Amyloid-beta (Aß) trajectories were modeled to provide individual-level estimates of Aß-positive (A+) chronicity, which were compared against longitudinal tau change. RESULTS: Elevated tau was observed in all NFT regions following A+ and longitudinal tau increased with respect to A+ chronicity. Tau increases in NFT regions I-III was observed 0-2.5 years following A+. Nearly all A+ individuals had tau increases in the medial temporal lobe. DISCUSSION: These findings highlight the rapid accumulation of amyloid and early onset of tau relative to amyloid in DS and provide a strategy for temporally characterizing AD neuropathology progression that is specific to the DS population and independent of chronological age. HIGHLIGHTS: Longitudinal amyloid trajectories reveal rapid Aß accumulation in Down syndrome NFT stage tau was strongly associated with A+ chronicity Early longitudinal tau increases were observed 2.5-5 years after reaching A.


Assuntos
Doença de Alzheimer , Síndrome de Down , Adulto , Humanos , Síndrome de Down/complicações , Proteínas tau , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Amiloide , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores
10.
medRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38076904

RESUMO

Importance: By age 40 years over 90% of adults with Down syndrome (DS) have Alzheimer's disease (AD) pathology and most progress to dementia. Despite having few systemic vascular risk factors, individuals with DS have elevated cerebrovascular disease (CVD) markers that track with the clinical progression of AD, suggesting a role for CVD that is hypothesized to be mediated by inflammatory factors. Objective: To examine the pathways through which small vessel CVD contributes to AD-related pathophysiology and neurodegeneration in adults with DS. Design: Cross sectional analysis of neuroimaging, plasma, and clinical data. Setting: Participants were enrolled in Alzheimer's Biomarker Consortium - Down Syndrome (ABC-DS), a multisite study of AD in adults with DS. Participants: One hundred eighty-five participants (mean [SD] age=45.2 [9.3] years) with available MRI and plasma biomarker data were included. White matter hyperintensity (WMH) volumes were derived from T2-weighted FLAIR MRI scans and plasma biomarker concentrations of amyloid beta (Aß42/Aß40), phosphorylated tau (p-tau217), astrocytosis (glial fibrillary acidic protein, GFAP), and neurodegeneration (neurofilament light chain, NfL) were measured with ultrasensitive immunoassays. Main Outcomes and Measures: We examined the bivariate relationships of WMH, Aß42/Aß40, p-tau217, and GFAP with age-residualized NfL across AD diagnostic groups. A series of mediation and path analyses examined causal pathways linking WMH and AD pathophysiology to promote neurodegeneration in the total sample and groups stratified by clinical diagnosis. Results: There was a direct and indirect bidirectional effect through GFAP of WMH on p-tau217 concentration, which was associated with NfL concentration in the entire sample. Among cognitively stable participants, WMH was directly and indirectly, through GFAP, associated with p-tau217 concentration, and in those with MCI, there was a direct effect of WMH on p-tau217 and NfL concentrations. There were no associations of WMH with biomarker concentrations among those diagnosed with dementia. Conclusions and Relevance: The findings suggest that among individuals with DS, CVD promotes neurodegeneration by increasing astrocytosis and tau pathophysiology in the presymptomatic phases of AD. This work joins an emerging literature that implicates CVD and its interface with neuroinflammation as a core pathological feature of AD in adults with DS.

11.
Brain Commun ; 5(6): fcad333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107504

RESUMO

Cognitive decline in Alzheimer's disease and other dementias typically begins long before clinical impairment. Identifying people experiencing subclinical decline may facilitate earlier intervention. This study developed cognitive trajectory clusters using longitudinally based random slope and change point parameter estimates from a Preclinical Alzheimer's disease Cognitive Composite and examined how baseline and most recently available clinical/health-related characteristics, cognitive statuses and biomarkers for Alzheimer's disease and vascular disease varied across these cognitive clusters. Data were drawn from the Wisconsin Registry for Alzheimer's Prevention, a longitudinal cohort study of adults from late midlife, enriched for a parental history of Alzheimer's disease and without dementia at baseline. Participants who were cognitively unimpaired at the baseline visit with ≥3 cognitive visits were included in trajectory modelling (n = 1068). The following biomarker data were available for subsets: positron emission tomography amyloid (amyloid: n = 367; [11C]Pittsburgh compound B (PiB): global PiB distribution volume ratio); positron emission tomography tau (tau: n = 321; [18F]MK-6240: primary regions of interest meta-temporal composite); MRI neurodegeneration (neurodegeneration: n = 581; hippocampal volume and global brain atrophy); T2 fluid-attenuated inversion recovery MRI white matter ischaemic lesion volumes (vascular: white matter hyperintensities; n = 419); and plasma pTau217 (n = 165). Posterior median estimate person-level change points, slopes' pre- and post-change point and estimated outcome (intercepts) at change point for cognitive composite were extracted from Bayesian Bent-Line Regression modelling and used to characterize cognitive trajectory groups (K-means clustering). A common method was used to identify amyloid/tau/neurodegeneration/vascular biomarker thresholds. We compared demographics, last visit cognitive status, health-related factors and amyloid/tau/neurodegeneration/vascular biomarkers across the cognitive groups using ANOVA, Kruskal-Wallis, χ2, and Fisher's exact tests. Mean (standard deviation) baseline and last cognitive assessment ages were 58.4 (6.4) and 66.6 (6.6) years, respectively. Cluster analysis identified three cognitive trajectory groups representing steep, n = 77 (7.2%); intermediate, n = 446 (41.8%); and minimal, n = 545 (51.0%) cognitive decline. The steep decline group was older, had more females, APOE e4 carriers and mild cognitive impairment/dementia at last visit; it also showed worse self-reported general health-related and vascular risk factors and higher amyloid, tau, neurodegeneration and white matter hyperintensity positive proportions at last visit. Subtle cognitive decline was consistently evident in the steep decline group and was associated with generally worse health. In addition, cognitive trajectory groups differed on aetiology-informative biomarkers and risk factors, suggesting an intimate link between preclinical cognitive patterns and amyloid/tau/neurodegeneration/vascular biomarker differences in late middle-aged adults. The result explains some of the heterogeneity in cognitive performance within cognitively unimpaired late middle-aged adults.

12.
Curr Res Neurobiol ; 5: 100111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020807

RESUMO

Anxiety disorders are among the most prevalent psychiatric disorders, with symptoms often beginning early in life. To model the pathophysiology of human pathological anxiety, we utilized Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in a nonhuman primate model of anxious temperament to selectively increase neuronal activity of the amygdala. Subjects included 10 young rhesus macaques; 5 received bilateral infusions of AAV5-hSyn-HA-hM3Dq into the dorsal amygdala, and 5 served as controls. Subjects underwent behavioral testing in the human intruder paradigm following clozapine or vehicle administration, prior to and following surgery. Behavioral results indicated that clozapine treatment post-surgery increased freezing across different threat-related contexts in hM3Dq subjects. This effect was again observed approximately 1.9 years following surgery, indicating the long-term functional capacity of DREADD-induced neuronal activation. [11C]deschloroclozapine PET imaging demonstrated amygdala hM3Dq-HA specific binding, and immunohistochemistry revealed that hM3Dq-HA expression was most prominent in basolateral nuclei. Electron microscopy confirmed expression was predominantly on neuronal membranes. Together, these data demonstrate that activation of primate amygdala neurons is sufficient to induce increased anxiety-related behaviors, which could serve as a model to investigate pathological anxiety in humans.

13.
Alzheimers Dement ; 19(12): 5755-5764, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37438872

RESUMO

INTRODUCTION: People with Down syndrome (DS) often develop Alzheimer's disease (AD). Here, we asked whether ultrasensitive plasma immunoassays for a tau N-terminal fragment (NT1-tau) and Aß isoforms predict cognitive impairment. METHODS: Plasma NT1-tau, Aß37 , Aß40 , and Aß42 levels were measured in a longitudinal discovery cohort (N = 85 participants, 220 samples) and a cross-sectional validation cohort (N = 239). We developed linear models and predicted values in the validation cohort. RESULTS: Discovery cohort linear mixed models for NT1-tau, Aß42 , and Aß37:42 were significant for age; there was no main effect of time. In cross-sectional models, NT1-tau increased and Aß42 decreased with age. NT1-tau predicted cognitive and functional scores. The discovery cohort linear model for NT1-tau predicted levels in the validation cohort. DISCUSSION: NT1-tau correlates with age and worse cognition in DS. Further validation of NT1-tau and other plasma biomarkers of AD neuropathology in DS cohorts is important for clinical utility.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Síndrome de Down , Humanos , Proteínas tau , Estudos Transversais , Cognição , Biomarcadores , Peptídeos beta-Amiloides , Fragmentos de Peptídeos
14.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333300

RESUMO

Anxiety disorders are among the most prevalent psychiatric disorders, with symptoms often beginning early in life. To model the pathophysiology of human pathological anxiety, we utilized Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in a nonhuman primate model of anxious temperament to selectively increase neuronal activity of the amygdala. Subjects included 10 young rhesus macaques; 5 received bilateral infusions of AAV5-hSyn-HA-hM3Dq into the dorsal amygdala, and 5 served as controls. Subjects underwent behavioral testing in the human intruder paradigm following clozapine or vehicle administration, prior to and following surgery. Behavioral results indicated that clozapine treatment post-surgery increased freezing across different threat-related contexts in hM3Dq subjects. This effect was again observed approximately 1.9 years following surgery, indicating the long-term functional capacity of DREADD-induced neuronal activation. [11C]deschloroclozapine PET imaging demonstrated amygdala hM3Dq-HA specific binding, and immunohistochemistry revealed that hM3Dq-HA expression was most prominent in basolateral nuclei. Electron microscopy confirmed expression was predominantly on neuronal membranes. Together, these data demonstrate that activation of primate amygdala neurons is sufficient to induce increased anxiety-related behaviors, which could serve as a model to investigate pathological anxiety in humans.

15.
JAMA Neurol ; 80(5): 462-473, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37010830

RESUMO

Importance: Postmenopausal females represent around 70% of all individuals with Alzheimer disease. Previous literature shows elevated levels of tau in cognitively unimpaired postmenopausal females compared with age-matched males, particularly in the setting of high ß-amyloid (Aß). The biological mechanisms associated with higher tau deposition in female individuals remain elusive. Objective: To examine the extent to which sex, age at menopause, and hormone therapy (HT) use are associated with regional tau at a given level of Aß, both measured with positron emission tomography (PET). Design, Setting, and Participants: This cross-sectional study included participants enrolled in the Wisconsin Registry for Alzheimer Prevention. Cognitively unimpaired males and females with at least 1 18F-MK-6240 and 11C-Pittsburgh compound B PET scan were analyzed. Data were collected between November 2006 and May 2021. Exposures: Premature menopause (menopause at younger than 40 years), early menopause (menopause at age 40-45 years), and regular menopause (menopause at older than 45 years) and HT user (current/past use) and HT nonuser (no current/past use). Exposures were self-reported. Main Outcomes and Measures: Seven tau PET regions that show sex differences across temporal, parietal, and occipital lobes. Primary analyses examined the interaction of sex, age at menopause or HT, and Aß PET on regional tau PET in a series of linear regressions. Secondary analyses investigated the influence of HT timing in association with age at menopause on regional tau PET. Results: Of 292 cognitively unimpaired individuals, there were 193 females (66.1%) and 99 males (33.9%). The mean (range) age at tau scan was 67 (49-80) years, 52 (19%) had abnormal Aß, and 106 (36.3%) were APOEε4 carriers. There were 98 female HT users (52.2%) (past/current). Female sex (standardized ß = -0.41; 95% CI, -0.97 to -0.32; P < .001), earlier age at menopause (standardized ß = -0.38; 95% CI, -0.14 to -0.09; P < .001), and HT use (standardized ß = 0.31; 95% CI, 0.40-1.20; P = .008) were associated with higher regional tau PET in individuals with elevated Aß compared with male sex, later age at menopause, and HT nonuse. Affected regions included medial and lateral regions of the temporal and occipital lobes. Late initiation of HT (>5 years following age at menopause) was associated with higher tau PET compared with early initiation (ß = 0.49; 95% CI, 0.27-0.43; P = .001). Conclusions and Relevance: In this study, females exhibited higher tau compared with age-matched males, particularly in the setting of elevated Aß. In females, earlier age at menopause and late initiation of HT were associated with increased tau vulnerability especially when neocortical Aß elevated. These observational findings suggest that subgroups of female individuals may be at higher risk of pathological burden.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Estudos Transversais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons , Menopausa , Hormônios
16.
Brain Commun ; 5(2): fcad057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37013174

RESUMO

An accurate blood test for Alzheimer's disease that is sensitive to preclinical proteinopathy and cognitive decline has clear implications for early detection and secondary prevention. We assessed the performance of plasma phosphorylated tau 217 ( pTa u 217 ) against brain PET markers of amyloid [ [ 11 C ] -labelled Pittsburgh compound B (PiB)] and tau ( [ 18 F ] MK-6240) and its utility for predicting longitudinal cognition. Samples were analysed from a subset of participants with up to 8 years follow-up in the Wisconsin Registry for Alzheimer's Prevention (WRAP; 2001-present; plasma 2011-present), a longitudinal cohort study of adults from midlife, enriched for parental history of Alzheimer's disease. Participants were a convenience sample who volunteered for at least one PiB scan, had usable banked plasma and were cognitively unimpaired at first plasma collection. Study personnel who interacted with participants or samples were blind to amyloid status. We used mixed effects models and receiver-operator characteristic curves to assess concordance between plasma pTa u 217 and PET biomarkers of Alzheimer's disease and mixed effects models to understand the ability of plasma pTa u 217 to predict longitudinal performance on WRAP's preclinical Alzheimer's cognitive composite (PACC-3). The primary analysis included 165 people (108 women; mean age = 62.9 ± 6.06; 160 still enrolled; 2 deceased; 3 discontinued). Plasma pTa u 217 was strongly related to PET-based estimates of concurrent brain amyloid ( ß ^ = 0.83 (0.75, 0.90), P < 0.001). Concordance was high between plasma pTa u 217 and both amyloid PET (area under the curve = 0.91, specificity = 0.80, sensitivity = 0.85, positive predictive value = 0.58, negative predictive value = 0.94) and tau PET (area under the curve = 0.95, specificity = 1, sensitivity = 0.85, positive predictive value = 1, negative predictive value = 0.98). Higher baseline pTa u 217 levels were associated with worse cognitive trajectories ( ß ^ p T a u × a g e = -0.07 (-0.09, -0.06), P < 0.001). In a convenience sample of unimpaired adults, plasma pTa u 217 levels correlate well with concurrent brain Alzheimer's disease pathophysiology and with prospective cognitive performance. These data indicate that this marker can detect disease before clinical signs and thus may disambiguate presymptomatic Alzheimer's disease from normal cognitive ageing.

17.
Brain Commun ; 5(2): fcad039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910417

RESUMO

Previous studies suggest associations between self-reported sleep problems and poorer health, cognition, Alzheimer's disease pathology and dementia-related outcomes. It is important to develop a deeper understanding of the relationship between these complications and sleep disturbance, a modifiable risk factor, in late midlife, a time when Alzheimer's disease pathology may be accruing. The objectives of this study included application of unsupervised machine learning procedures to identify distinct subgroups of persons with problematic sleep and the association of these subgroups with concurrent measures of mental and physical health, cognition and PET-identified amyloid. Dementia-free participants from the Wisconsin Registry for Alzheimer's Prevention (n = 619) completed sleep questionnaires including the Insomnia Severity Index, Epworth Sleepiness Scale and Medical Outcomes Study Sleep Scale. K-means clustering analysis identified discrete sleep problem groups who were then compared across concurrent health outcomes (e.g. depression, self-rated health and insulin resistance), cognitive composite indices including episodic memory and executive function and, in a subset, Pittsburgh Compound B PET imaging to assess amyloid burden. Significant omnibus tests (P < 0.05) were followed with pairwise comparisons. Mean (SD) sample baseline sleep assessment age was 62.6 (6.7). Cluster analysis identified three groups: healthy sleepers [n = 262 (42.3%)], intermediate sleepers [n = 229 (37.0%)] and poor sleepers [n = 128 (20.7%)]. All omnibus tests comparing demographics and health measures across sleep groups were significant except for age, sex and apolipoprotein E e4 carriers; the poor sleepers group was worse than one or both of the other groups on all other measures, including measures of depression, self-reported health and memory complaints. The poor sleepers group had higher average body mass index, waist-hip ratio and homeostatic model assessment of insulin resistance. After adjusting for covariates, the poor sleepers group also performed worse on all concurrent cognitive composites except working memory. There were no differences between sleep groups on PET-based measures of amyloid. Sensitivity analyses indicated that while different clustering approaches resulted in different group assignments for some (predominantly the intermediate group), between-group patterns in outcomes were consistent. In conclusion, distinct sleep characteristics groups were identified with a sizable minority (20.7%) exhibiting poor sleep characteristics, and this group also exhibited the poorest concurrent mental and physical health and cognition, indicating substantial multi-morbidity; sleep group was not associated with amyloid PET estimates. Precision-based management of sleep and related factors may provide an opportunity for early intervention that could serve to delay or prevent clinical impairment.

18.
Alzheimers Res Ther ; 15(1): 55, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932429

RESUMO

BACKGROUND: Insulin resistance (IR) and type 2 diabetes have been found to increase the risk for Alzheimer's clinical syndrome in epidemiologic studies but have not been associated with tau tangles in neuropathological research and have been inconsistently associated with cerebrospinal fluid P-tau181. IR and type 2 diabetes are well-recognized vascular risk factors. Some studies suggest that cardiovascular risk may act synergistically with cortical amyloid to increase tau measured using tau PET. Utilizing data from largely nondemented middle-aged and older adult cohorts enriched for AD risk, we investigated the association of IR and diabetes to tau PET and whether amyloid moderated those relationships. METHODS: Participants were enrolled in either the Wisconsin Registry for Alzheimer's Prevention (WRAP) or Wisconsin Alzheimer's Disease Research Center (WI-ADRC) Clinical Core. Two partially overlapping samples were studied: a sample characterized using HOMA-IR (n=280 WRAP participants) and a sample characterized on diabetic status (n=285 WRAP and n=109 WI-ADRC). IR was measured using the homeostasis model assessment of insulin resistance (HOMA-IR). Tau PET employing the radioligand 18F-MK-6240 was used to detect AD-specific aggregated tau. Linear regression tested the relationship of IR and diabetic status to tau PET standardized uptake value ratio (SUVR) within the entorhinal cortex and whether relationships were moderated by amyloid assessed by amyloid PET distribution volume ratio (DVR) and amyloid PET positivity status. RESULTS: Neither HOMA-IR nor diabetic status was significantly associated with tau PET SUVR. The relationship between IR and tau PET SUVR was not moderated by amyloid PET DVR or positivity status. The association between diabetic status and tau PET SUVR was not significantly moderated by amyloid PET DVR but was significantly moderated by amyloid PET positivity status. Among the amyloid PET-positive participants, the estimated marginal tau PET SUVR mean was higher in the diabetic (n=6) relative to the nondiabetic group (n=88). CONCLUSION: Findings indicate that IR may not be related to tau in generally healthy middle-aged and older adults who are in the early stages of the AD clinicopathologic continuum but suggest the need for additional research to investigate whether a synergistic relationship between type 2 diabetes and amyloid is associated with increased tau levels.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Pessoa de Meia-Idade , Humanos , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Fatores de Risco , Amiloide , Tomografia por Emissão de Pósitrons , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Disfunção Cognitiva/patologia
19.
medRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945447

RESUMO

Introduction: People with Down syndrome (DS) often develop Alzheimer disease (AD). Here we asked whether ultrasensitive plasma immunoassays for a tau N-terminal fragment (NT1-tau) and Aß isoforms predict cognitive impairment. Methods: Plasma NT1-tau, Aß 37 , Aß 40 , and Aß 42 levels were measured in a longitudinal discovery cohort (N = 85 participants, 220 samples) and a cross-sectional validation cohort (N = 239). We developed linear models and predicted values in the validation cohort. Results: Linear mixed models for NT1-tau, Aß 42, and Aß 37:42 were significant for age, there was no main effect of time in the discovery cohort. In cross-sectional models, NT1-tau and Aß 42 increased with age. NT1-tau predicted DLD scores. The discovery cohort linear model for NT1-tau predicted NT1-tau levels in the validation cohort. Discussion: NT1-tau correlates with age and worse cognition in DS. Further validation of NT1-tau and other plasma biomarkers of AD neuropathology in DS cohorts is important for clinical utility.

20.
Lancet Neurol ; 22(1): 55-65, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517172

RESUMO

BACKGROUND: Important insights into the early pathogenesis of Alzheimer's disease can be provided by studies of autosomal dominant Alzheimer's disease and Down syndrome. However, it is unclear whether the timing and spatial distribution of amyloid accumulation differs between people with autosomal dominant Alzheimer's disease and those with Down syndrome. We aimed to directly compare amyloid changes between these two groups of people. METHODS: In this cross-sectional study, we included participants (aged ≥25 years) with Down syndrome and sibling controls who had MRI and amyloid PET scans in the first data release (January, 2020) of the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) study. We also included carriers of autosomal dominant Alzheimer's disease genetic mutations and non-carrier familial controls who were within a similar age range to ABC-DS participants (25-73 years) and had MRI and amyloid PET scans at the time of a data freeze (December, 2020) of the Dominantly Inherited Alzheimer Network (DIAN) study. Controls from the two studies were combined into a single group. All DIAN study participants had genetic testing to determine PSEN1, PSEN2, or APP mutation status. APOE genotype was determined from blood samples. CSF samples were collected in a subset of ABC-DS and DIAN participants and the ratio of amyloid ß42 (Aß42) to Aß40 (Aß42/40) was measured to evaluate its Spearman's correlation with amyloid PET. Global PET amyloid burden was compared with regards to cognitive status, APOE ɛ4 status, sex, age, and estimated years to symptom onset. We further analysed amyloid PET deposition by autosomal dominant mutation type. We also assessed regional patterns of amyloid accumulation by estimated number of years to symptom onset. Within a subset of participants the relationship between amyloid PET and CSF Aß42/40 was evaluated. FINDINGS: 192 individuals with Down syndrome and 33 sibling controls from the ABC-DS study and 265 carriers of autosomal dominant Alzheimer's disease mutations and 169 non-carrier familial controls from the DIAN study were included in our analyses. PET amyloid centiloid and CSF Aß42/40 were negatively correlated in carriers of autosomal dominant Alzheimer's disease mutations (n=216; r=-0·565; p<0·0001) and in people with Down syndrome (n=32; r=-0·801; p<0·0001). There was no difference in global PET amyloid burden between asymptomatic people with Down syndrome (mean 18·80 centiloids [SD 28·33]) versus asymptomatic mutation carriers (24·61 centiloids [30·27]; p=0·11) and between symptomatic people with Down syndrome (77·25 centiloids [41·76]) versus symptomatic mutation carriers (69·15 centiloids [51·10]; p=0·34). APOE ɛ4 status and sex had no effect on global amyloid PET deposition. Amyloid deposition was elevated significantly earlier in mutation carriers than in participants with Down syndrome (estimated years to symptom onset -23·0 vs -17·5; p=0·0002). PSEN1 mutations primarily drove this difference. Early amyloid accumulation occurred in striatal and cortical regions for both mutation carriers (n=265) and people with Down syndrome (n=128). Although mutation carriers had widespread amyloid accumulation in all cortical regions, the medial occipital regions were spared in people with Down syndrome. INTERPRETATION: Despite minor differences, amyloid PET changes were similar between people with autosomal dominant Alzheimer's disease versus Down syndrome and strongly supported early amyloid dysregulation in individuals with Down syndrome. Individuals with Down syndrome aged at least 35 years might benefit from early intervention and warrant future inclusion in clinical trials, particularly given the relatively high incidence of Down syndrome. FUNDING: The National Institute on Aging, Riney and Brennan Funds, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the German Center for Neurodegenerative Diseases, and the Japan Agency for Medical Research and Development.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Córtex Cerebral , Síndrome de Down , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/análise , Apolipoproteínas E/genética , Biomarcadores/análise , Estudos Transversais , Síndrome de Down/sangue , Síndrome de Down/diagnóstico por imagem , Síndrome de Down/genética , Tomografia por Emissão de Pósitrons , Córtex Cerebral/química , Córtex Cerebral/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...