Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766109

RESUMO

Objective: Anterior Cruciate Ligament (ACL) injury develops the Osteoarthritis (OA) via two distinct processes: initial direct micro-injury of the cartilage surface by compressive force during ACL injury, and secondary joint instability due to the deficiency of the ACL. Using the conventional Compression-induced ACL-R and novel Non-Compression ACL-R models, we aimed to reveal the individual effects on OA progression after ACL injury. Methods: Twelve-week-old C57BL/6 male were randomly divided to three experimental groups: Compression ACL-R, Non-Compression ACL-R, and Intact. We performed the joint laxity test and microscope analysis at 0 days, in vivo imaging with matrix-metalloproteinases (MMPs) at 3 and 7 days, histological and micro-CT analysis at 0, 7, 14, and 28 days. Results: Although no differences in the joint laxity were observed between both ACL-R groups, the Compression ACL-R group exhibited a significant increase of cartilage roughness immediately after injury compared with the Non-Compression group. At 7 days, Compression group increased MMPs-induced fluorescence intensity slightly and MMP-13 positive cell ratio of chondrocytes significantly than that in the Non-Compression group. Moreover, histological cartilage degeneration initiated in the whole joint level of the Compression group at the same time point. Micro-CT analysis revealed that sclerosis of tibial Subchondral bone in the Compression group developed significantly more than in the Non-Compression group at 28 days, especially in the medial tibial compartment. Conclusions: Concurrent joint contact during ACL rupture caused initial micro-damage on the cartilage surface and early cartilage degeneration with MMP-13 production, leading to later bone formation in the subchondral bone.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38697509

RESUMO

OBJECTIVE: People who sustain joint injuries such as anterior cruciate ligament (ACL) rupture often develop post-traumatic osteoarthritis (PTOA). In human patients, ACL injuries are often treated with ACL reconstruction. However, it is still unclear how effective joint restabilization is for reducing the progression of PTOA. The goal of this study was to determine how surgical restabilization of a mouse knee joint following non-invasive ACL injury affects PTOA progression. DESIGN: In this study, 187 mice were subjected to non-invasive ACL injury or no injury. After injury, mice underwent restabilization surgery, sham surgery, or no surgery. Mice were then euthanized on day 14 or day 49 after injury/surgery. Functional analyses were performed at multiple time points to assess voluntary movement, gait, and pain. Knees were analyzed ex vivo with micro-computed tomography, RT-PCR, and whole-joint histology to assess articular cartilage degeneration, synovitis, and osteophyte formation. RESULTS: Both ACL injury and surgery resulted in loss of epiphyseal trabecular bone (-27-32%) and reduced voluntary movement at early time points. Joint restabilization successfully lowered OA score (-78% relative to injured at day 14, p < 0.0001), and synovitis scores (-37% relative to injured at day 14, p = 0.042), and diminished the formation of chondrophytes/osteophytes (-97% relative to injured at day 14, p < 0.001, -78% at day 49, p < 0.001). CONCLUSIONS: This study confirmed that surgical knee restabilization was effective at reducing articular cartilage degeneration and diminishing chondrophyte/osteophyte formation after ACL injury in mice, suggesting that these processes are largely driven by joint instability in this mouse model. However, restabilization was not able to mitigate the early inflammatory response and the loss of epiphyseal trabecular bone, indicating that these processes are independent of joint instability.

3.
Am J Physiol Heart Circ Physiol ; 326(3): H845-H856, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305753

RESUMO

Myocardial infarction (MI) and osteoporotic fracture (Fx) are two of the leading causes of mortality and morbidity worldwide. Although these traumatic injuries are treated as if they are independent, there is epidemiological evidence linking the incidence of Fx and MI, thus raising the question of whether each of these events can actively influence the risk of the other. Atherosclerotic cardiovascular disease and osteoporosis, the chronic conditions leading to MI and Fx, are known to have shared pathoetiology. Furthermore, sustained systemic inflammation after traumas such as MI and Fx has been shown to exacerbate both underlying chronic conditions. However, the effects of MI and Fx outside their own system have not been well studied. The sympathetic nervous system (SNS) and the complement system initiate a systemic response after MI that could lead to subsequent changes in bone remodeling through osteoclasts. Similarly, SNS and complement system activation following fracture could lead to heart tissue damage and exacerbate atherosclerosis. To determine whether damaging bone-heart cross talk may be important comorbidity following Fx or MI, this review details the current understanding of bone loss after MI, cardiovascular damage after Fx, and possible shared underlying mechanisms of these processes.


Assuntos
Aterosclerose , Infarto do Miocárdio , Fraturas por Osteoporose , Humanos , Fraturas por Osteoporose/epidemiologia , Coração , Doença Crônica
4.
Bone ; 179: 116976, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042445

RESUMO

Mef2c is a transcription factor that mediates key cellular behaviors that promote endochondral ossification and bone formation. Previously, Mef2c has been shown to regulate Sost transcription via its osteocyte-specific enhancer, ECR5, and conditional deletions of Mef2cfl/fl with either Col1-Cre or Dmp1-Cre produced generalized high bone mass (HBM) consistent with Van Buchem Disease phenotypes. However, Sost-/-; Mef2cfl/fl; Dmp1-Cre mice produced a significantly higher bone mass phenotype that Sost-/- alone suggesting that Mef2c modulates bone mass through additional mechanisms, independent of Sost. To identify new Mef2c transcriptional targets important in bone metabolism, we profiled gene expression by single-cell RNA sequencing in subpopulations of cells isolated from Mef2cfl/fl; Dmp1-Cre and Mef2cfl/fl; Bglap-Cre femurs, both strains exhibiting similar high bone mass phenotypes. However, we found Mef2cfl/fl; Bglap-Cre to also display a growth plate defect characterized by an expansion of several osteoprogenitor subpopulations. Differential gene expression analysis identified a total of 96 up- and 2434 down- regulated genes in Mef2cfl/fl; Bglap-Cre and 176 up- and 1041 down- regulated genes in Mef2cfl/fl; Dmp1-Cre bone cell subpopulations compared to wildtype mice. Mef2c deletion affected the transcriptomes across several cell types including mesenchymal progenitors (MP), osteoprogenitors (OSP), osteoblast (OB), and osteocyte (OCY) subpopulations. Several energy metabolism genes such as Uqcrb, Ndufv2, Ndufs3, Ndufa13, Ndufb9, Ndufb5, Cox6a1, Cox5a, Atp5o, Atp5g2, Atp5b, Atp5 were significantly down regulated in Mef2c-deficient OBs and OCYs, in both strains. Binding motif analysis of promoter regions of differentially expressed genes identified Mef2c binding in Bone Sialoprotein (BSP/Ibsp), a gene known to cause increased trabecular BV/TV in the femurs of Ibsp-/- mice. Immunohistochemical analysis confirmed the absence of Ibsp protein in OBs and OCYs. These findings suggests that the HBM in Sost-/-; Mef2cfl/fl; Dmp1-Cre is caused by a multitude of transcriptional changes in genes that regulate bone formation, two of which are Sost and Ibsp.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Osso e Ossos , Fatores de Transcrição MEF2 , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso e Ossos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição MEF2/genética , Osteoblastos/metabolismo , Osteogênese/genética
5.
J Vis Exp ; (199)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37843296

RESUMO

Traumatic joint injuries such as anterior cruciate ligament (ACL) rupture or meniscus tears commonly lead to post-traumatic osteoarthritis (PTOA) within 10-20 years following injury. Understanding the early biological processes initiated by joint injuries (e.g., inflammation, matrix metalloproteinases (MMPs), cathepsin proteases, bone resorption) is crucial for understanding the etiology of PTOA. However, there are few options for in vivo measurement of these biological processes, and the early biological responses may be confounded if invasive surgical techniques or injections are used to initiate OA. In our studies of PTOA, we have used commercially available near-infrared protease activatable probes combined with fluorescence reflectance imaging (FRI) to quantify protease activity in vivo following non-invasive compression-induced ACL injury in mice. This non-invasive ACL injury method closely recapitulates clinically relevant injury conditions and is completely aseptic since it does not involve disrupting the skin or the joint capsule. The combination of these injury and imaging methods allows us to study the time course of protease activity at multiple time points following a traumatic joint injury.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reabsorção Óssea , Osteoartrite , Camundongos , Animais , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/complicações , Ligamento Cruzado Anterior/diagnóstico por imagem , Ligamento Cruzado Anterior/cirurgia , Peptídeo Hidrolases
6.
JBMR Plus ; 7(8): e10759, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37614305

RESUMO

Post traumatic osteoarthritis (PTOA) is a form of secondary osteoarthritis (OA) that develops in ~50% of cases of severe articular joint injuries and leads to chronic and progressive degradation of articular cartilage and other joint tissues. PTOA progression can be exacerbated by repeated injury and systemic inflammation. Few studies have examined approaches for blunting or slowing down PTOA progression with emphasis on systemic inflammation; most arthritis studies focused on the immune system have been in the context of rheumatoid arthritis. To examine how the gut microbiome affects systemic inflammation during PTOA development, we used a chronic antibiotic treatment regimen starting at weaning for 6 weeks before anterior cruciate ligament (ACL) rupture in STR/ort mice combined with lipopolysaccharide (LPS)-induced systemic inflammation. STR/ort mice develop spontaneous OA as well as a more severe PTOA phenotype than C57Bl/6J mice. By 6 weeks post injury, histological examination showed a more robust cartilage staining in the antibiotic-treated (AB) STR/ort mice than in the untreated STR/ort controls. Furthermore, we also examined the effects of AB treatment on systemic inflammation and found that the effects of LPS administration before injury are also blunted by AB treatment in STR/ort mice. The AB- or AB+LPS-treated STR/ort injured joints more closely resembled the C57Bl/6J VEH OA phenotypes than the vehicle- or LPS-treated STR/ort, suggesting that antibiotic treatment has the potential to slow disease progression and should be further explored therapeutically as prophylactic post injury. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

7.
J Biomech Eng ; 145(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37417814

RESUMO

Noninvasive compression-induced anterior cruciate ligament rupture (ACL-R) is an easy and reproducible model for studying post-traumatic osteoarthritis (PTOA) in mice. However, equipment typically used for ACL-R is expensive, immobile, and not available to all researchers. In this study, we compared PTOA progression in mice injured with a low-cost custom ACL-rupture device (CARD) to mice injured with a standard system (ElectroForce 3200). We quantified anterior-posterior (AP) joint laxity immediately following injury, epiphyseal trabecular bone microstructure, and osteophyte volume at 2 and 6 weeks post injury using micro-computed tomography, and osteoarthritis progression and synovitis at 2 and 6 weeks post injury using whole-joint histology. We observed no significant differences in outcomes in mice injured with the CARD system compared to mice injured with the Electroforce (ELF) system. However, AP joint laxity data and week 2 micro-CT and histology outcomes suggested that injuries may have been slightly more severe and PTOA progressed slightly faster in mice injured with the CARD system compared to the ELF system. Altogether, these data confirm that ACL-R can be successfully and reproducibly performed with the CARD system and that osteoarthritis (OA) progression is mostly comparable to that of mice injured with the ELF system, though potentially slightly faster. The CARD system is low cost and portable, and we are making the plans and instructions freely available to all interested investigators in the hopes that they will find this system useful for their studies of OA in mice.


Assuntos
Lesões do Ligamento Cruzado Anterior , Instabilidade Articular , Osteoartrite , Camundongos , Animais , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Microtomografia por Raio-X , Osteoartrite/diagnóstico por imagem
8.
JBMR Plus ; 7(4): e10724, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37065633

RESUMO

Molecular oxygen levels vary during development and disease. Adaptations to decreased oxygen bioavailability (hypoxia) are mediated by hypoxia-inducible factor (HIF) transcription factors. HIFs are composed of an oxygen-dependent α subunit (HIF-α), of which there are two transcriptionally active isoforms (HIF-1α and HIF-2α), and a constitutively expressed ß subunit (HIFß). Under normoxic conditions, HIF-α is hydroxylated via prolyl hydroxylase domain (PHD) proteins and targeted for degradation via Von Hippel-Lindau (VHL). Under hypoxic conditions, hydroxylation via PHD is inhibited, allowing for HIF-α stabilization and induction of target transcriptional changes. Our previous studies showed that Vhl deletion in osteocytes (Dmp1-cre; Vhl f/f ) resulted in HIF-α stabilization and generation of a high bone mass (HBM) phenotype. The skeletal impact of HIF-1α accumulation has been well characterized; however, the unique skeletal impacts of HIF-2α remain understudied. Because osteocytes orchestrate skeletal development and homeostasis, we investigated the role of osteocytic HIF-α isoforms in driving HBM phenotypes via osteocyte-specific loss-of-function and gain-of-function HIF-1α and HIF-2α mutations in C57BL/6 female mice. Deletion of Hif1a or Hif2a in osteocytes showed no effect on skeletal microarchitecture. Constitutively stable, degradation-resistant HIF-2α (HIF-2α cDR), but not HIF-1α cDR, generated dramatic increases in bone mass, enhanced osteoclast activity, and expansion of metaphyseal marrow stromal tissue at the expense of hematopoietic tissue. Our studies reveal a novel influence of osteocytic HIF-2α in driving HBM phenotypes that can potentially be harnessed pharmacologically to improve bone mass and reduce fracture risk. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

9.
J Biomech ; 152: 111571, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37027962

RESUMO

To investigate the biomechanical properties of rat bladder tissue after spinal cord injury (SCI) using uniaxial tensile testing. Evidence suggests the bladder wall undergoes remodeling following SCI. There is limited data describing the biomechanical properties of bladder wall after SCI. This study describes the changes in elastic and viscoelastic mechanical properties of bladder tissue using a rat model after SCI. Seventeen adult rats received mid-thoracic SCI. Basso, Beattie, and Bresnahan (BBB) locomotor testing was performed on the rats 7-14 days after injury quantifying the degree of SCI. Bladder tissue samples were collected from controls and spinal injured rats at 2- and 9-weeks post-injury. Tissue samples underwent uniaxial stress relaxation to determine instantaneous and relaxation modulus as well as monotonic load-to failure to determine Young's modulus, yield stress and strain, and ultimate stress. SCI resulted in abnormal BBB locomotor scores. Nine weeks post-injury, instantaneous modulus decreased by 71.0% (p = 0.03) compared to controls. Yield strain showed no difference at 2 weeks post-injury but increased 78% (p = 0.003) in SCI rats at 9 weeks post-injury. Compared to controls, ultimate stress decreased 46.5% (p = 0.05) at 2 weeks post-injury in SCI rats but demonstrated no difference at 9 weeks post-injury. The biomechanical properties of rat bladder wall 2 weeks after SCI showed minimal difference compared to controls. By week 9, SCI bladders had a reduction in instantaneous modulus and increased yield strain. The findings indicate biomechanical differences can be identified between control and experimental groups at 2- and 9-week intervals using uniaxial testing.


Assuntos
Traumatismos da Medula Espinal , Bexiga Urinária , Ratos , Animais , Ratos Sprague-Dawley , Medula Espinal
10.
J Orthop Res ; 41(9): 1945-1952, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36815216

RESUMO

The novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has infected more than 650 million people worldwide. Approximately 23% of these patients developed lasting "long-haul" COVID symptoms, including fatigue, joint pain, and systemic hyperinflammation. However, the direct clinical impact of SARS-CoV-2 infection on the skeletal system including bone and joint health has not been determined. Utilizing a humanized mouse model of COVID-19, this study provides the first direct evidence that SARS-CoV-2 infection leads to acute bone loss, increased osteoclast number, and thinner growth plates. This bone loss could decrease whole-bone mechanical strength and increase the risk of fragility fractures, particularly in older patients, while thinner growth plates may create growth disturbances in younger patients. Evaluating skeletal health in patients that have recovered from COVID-19 will be crucial to identify at-risk populations and develop effective countermeasures.


Assuntos
Doenças Ósseas Metabólicas , COVID-19 , Animais , Camundongos , COVID-19/complicações , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
11.
Bone ; 167: 116646, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529445

RESUMO

Mechanical unloading causes rapid loss of bone structure and strength, which gradually recovers after resuming normal loading. However, it is not well established how this adaptation to unloading and reloading changes with age. Clinically, elderly patients are more prone to musculoskeletal injury and longer periods of bedrest, therefore it is important to understand how periods of disuse will affect overall skeletal health of aged subjects. Bone also undergoes an age-related decrease in osteocyte density, which may impair mechanoresponsiveness. In this study, we examined bone adaptation during unloading and subsequent reloading in mice. Specifically, we examined the differences in bone adaptation between young mice (3-month-old), old mice (18-month-old), and transgenic mice that exhibit diminished osteocyte density at a young age (3-month-old BCL-2 transgenic mice). Mice underwent 14 days of hindlimb unloading followed by up to 14 days of reloading. We analyzed trabecular and cortical bone structure in the femur, mechanical properties of the femoral cortical diaphysis, osteocyte density and cell death in cortical bone, and serum levels of inflammatory cytokines. We found that young mice lost ~10% cortical bone volume and 27-42% trabecular bone volume during unloading and early reloading, with modest recovery of metaphyseal trabecular bone and near total recovery of epiphyseal trabecular bone, but no recovery of cortical bone after 14 days of reloading. Old mice lost 12-14% cortical bone volume and 35-50% trabecular bone volume during unloading and early reloading but had diminished recovery of trabecular bone during reloading and no recovery of cortical bone. In BCL-2 transgenic mice, no cortical bone loss was observed during unloading or reloading, but 28-31% trabecular bone loss occurred during unloading and early reloading, with little to no recovery during reloading. No significant differences in circulating inflammatory cytokine levels were observed due to unloading and reloading in any of the experimental groups. These results illustrate important differences in bone adaptation in older and osteocyte deficient mice, suggesting a possible period of vulnerability in skeletal health in older subjects during and following a period of disuse that may affect skeletal health in elderly patients.


Assuntos
Osso e Ossos , Osteócitos , Camundongos , Animais , Osteócitos/metabolismo , Osso Cortical , Fêmur/metabolismo , Elevação dos Membros Posteriores , Camundongos Transgênicos
12.
Methods Mol Biol ; 2598: 345-356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36355304

RESUMO

The utility of nonsurgical, mechanical compression-based joint injury models to study osteoarthritis pathogenesis and treatments is increasing. Joint injury may be induced via cyclic compression loading or acute overloading to induce anterior cruciate ligament rupture. Models utilizing mechanical testing systems are highly repeatable, require little expertise, and result in a predictable onset of osteoarthritis-like pathology on a rapidly progressing timeline. In this chapter, we describe the procedures and equipment needed to perform mechanical compression-induced initiation of osteoarthritis in mice and rats.


Assuntos
Lesões do Ligamento Cruzado Anterior , Cartilagem Articular , Osteoartrite , Camundongos , Ratos , Animais , Cartilagem Articular/patologia , Lesões do Ligamento Cruzado Anterior/etiologia , Lesões do Ligamento Cruzado Anterior/patologia , Lesões do Ligamento Cruzado Anterior/cirurgia , Osteoartrite/etiologia , Osteoartrite/patologia , Modelos Animais de Doenças
13.
PLoS One ; 17(10): e0271776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36302059

RESUMO

In Duchenne muscular dystrophy (DMD), a lack of functional dystrophin leads to myofiber instability and progressive muscle damage that results in fibrosis. While fibrosis is primarily characterized by an accumulation of extracellular matrix (ECM) components, there are changes in ECM architecture during fibrosis that relate more closely to functional muscle stiffness. One of these architectural changes in dystrophic muscle is collagen cross-linking, which has been shown to increase the passive muscle stiffness in models of fibrosis including the mdx mouse, a model of DMD. We tested whether the intraperitoneal injections of beta-aminopropionitrile (BAPN), an inhibitor of the cross-linking enzyme lysyl oxidase, would reduce collagen cross-linking and passive stiffness in young and adult mdx mice compared to saline-injected controls. We found no significant differences between BAPN treated and saline treated mice in collagen cross-linking and stiffness parameters. However, we observed that while collagen cross-linking and passive stiffness scaled positively in dystrophic muscles, collagen fiber alignment scaled with passive stiffness distinctly between muscles. We also observed that the dystrophic diaphragm showed the most dramatic fibrosis in terms of collagen content, cross-linking, and stiffness. Overall, we show that while BAPN was not effective at reducing collagen cross-linking, the positive association between collagen cross-linking and stiffness in dystrophic muscles still show cross-linking as a viable target for reducing passive muscle stiffness in DMD or other fibrotic muscle conditions.


Assuntos
Distrofia Muscular de Duchenne , Proteína-Lisina 6-Oxidase , Animais , Camundongos , Aminopropionitrilo/farmacologia , Colágeno , Modelos Animais de Doenças , Fibrose , Camundongos Endogâmicos mdx , Músculo Esquelético/fisiologia , Proteína-Lisina 6-Oxidase/antagonistas & inibidores
14.
Front Immunol ; 13: 938075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967299

RESUMO

Osteoarthritis (OA) is the most common joint disease, affecting over 300 million people world-wide. Accumulating evidence attests to the important roles of the immune system in OA pathogenesis. Understanding the role of various immune cells in joint degeneration or joint repair after injury is vital for improving therapeutic strategies for treating OA. Post-traumatic osteoarthritis (PTOA) develops in ~50% of individuals who have experienced an articular trauma like an anterior cruciate ligament (ACL) rupture. Here, using the high resolution of single-cell RNA sequencing, we delineated the temporal dynamics of immune cell accumulation in the mouse knee joint after ACL rupture. Our study identified multiple immune cell types in the joint including neutrophils, monocytes, macrophages, B cells, T cells, NK cells and dendritic cells. Monocytes and macrophage populations showed the most dramatic changes after injury. Further characterization of monocytes and macrophages reveled 9 major subtypes with unique transcriptomics signatures, including a tissue resident Lyve1hiFolr2hi macrophage population and Trem2hiFcrls+ recruited macrophages, both showing enrichment for phagocytic genes and growth factors such as Igf1, Pdgfa and Pdgfc. We also identified several genes induced or repressed after ACL injury in a cell type-specific manner. This study provides new insight into PTOA-associated changes in the immune microenvironment and highlights macrophage subtypes that may play a role in joint repair after injury.


Assuntos
Lesões do Ligamento Cruzado Anterior , Receptor 2 de Folato , Osteoartrite , Animais , Lesões do Ligamento Cruzado Anterior/complicações , Lesões do Ligamento Cruzado Anterior/genética , Humanos , Articulação do Joelho/patologia , Glicoproteínas de Membrana , Camundongos , Osteoartrite/genética , Osteoartrite/patologia , RNA-Seq , Receptores Imunológicos
15.
J Tissue Eng Regen Med ; 16(8): 718-731, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567775

RESUMO

Large animal testing and clinical trials using bioengineered bladder for augmentation have revealed that large grafts fail due to insufficient blood supply. To address this critical issue, an in vivo staged implant strategy was developed and evaluated to create autologous, vascularized bioengineered bladder tissue with potential for clinical translation. Pig bladders were used to create acellular urinary bladder matrices (UBMs), which were implanted on the rectus abdominus muscles of rats and pigs to generate cellular and vascular grafts. Rectus-regenerated bladder grafts (rrBGs) were highly cellularized and contained an abundance of CD31-positive blood vessels, which were shown to be functional by perfusion studies. Muscle patterns within grafts showed increased smooth muscle formation over time and specifically within the detrusor compartment, with no evidence of striated muscle. Large, autologous rrBGs were transplanted to the pig bladder after partial cystectomy and compared to transplantation of control UBMs at 2 weeks and 3 months post-transplant. Functional, ink-perfused blood vessels were found in the central portion of all rrBGs at 2 weeks, while UBM grafts were significantly deteriorated, contracted and lacked central cellularization and vascularization. By 3 months, rrBGs had mature smooth muscle bundles and were morphologically similar to native bladder. This staged implantation technique allows for regeneration and harvest of large bladder grafts that are morphologically similar to native tissue with functional vessels capable of inosculating with host bladder vessels to provide quick perfusion to the central area of the large graft, thereby preventing early ischemia and contraction.


Assuntos
Músculo Liso , Bexiga Urinária , Animais , Músculo Liso/fisiologia , Pelve , Perfusão , Ratos , Regeneração/fisiologia , Suínos
16.
JBMR Plus ; 6(5): e10625, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35509635

RESUMO

Type 1 diabetes mellitus (T1DM) affects 9.5% of the population. T1DM is characterized by severe insulin deficiency that causes hyperglycemia and leads to several systemic effects. T1DM has been suggested as a risk factor for articular cartilage damage and loss, which could expedite the development of osteoarthritis (OA). OA represents a major public health challenge by affecting 300 million people globally, yet very little is known about the correlation between T1DM and OA. In addition, current studies that have looked at the interaction between diabetes mellitus and OA have reported conflicting results with some suggesting a positive correlation whereas others did not. In this study, we aimed to evaluate whether T1DM exacerbates the development of spontaneous OA or accelerates the progression of posttraumatic osteoarthritis (PTOA) after joint injury. Histological evaluation of T1DM and control joints determined that T1DM mice displayed cartilage degeneration measurements consistent with mild OA phenotypes. RNA sequencing analyses identified significantly upregulated genes in T1DM corresponding to matrix-degrading enzymes known to promote cartilage matrix degradation, suggesting a role of these enzymes in OA development. Next, we assessed whether preexisting T1DM influences PTOA development subsequent to trauma. At 6 weeks post-injury, T1DM injured joints displayed significantly less cartilage damage and joint degeneration than injured non-diabetic joints, suggesting a significant delay in PTOA disease progression. At the single-cell resolution, we identified increased number of cells expressing the chondrocyte markers Col2a1, Acan, and Cytl1 in the T1DM injured group. Our findings demonstrate that T1DM can be a risk factor for OA but not for PTOA. This study provides the first account of single-cell resolution related to T1DM and the risk for OA and PTOA. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

17.
J Orthop Res ; 40(4): 878-890, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34081357

RESUMO

Fracture induces systemic bone loss in mice and humans, and a first (index) fracture increases the risk of future fracture at any skeletal site more in men than women. The etiology of this sex difference is unknown, but fracture may induces a greater systemic bone loss response in men. Also sex differences in systemic muscle loss after fracture have not been examined. We investigated sex differences in systemic bone and muscle loss after transverse femur fracture in 3-month-old male and female C57BL/6 J mice. Whole-body and regional bone mineral content and density (BMC and BMD), trabecular and cortical bone microstructure, muscle contractile force, muscle mass, and muscle fiber size were quantified at multiple time points postfracture. Serum concentrations of inflammatory cytokines (IL-1ß, IL-6, and TNF-α) were measured 1-day postfracture. One day postfracture, IL-6 and Il-1B were elevated in fracture mice of both sexes, but TNF-α was only elevated in male fracture mice. Fracture reduced BMC, BMD, and trabecular bone microstructural properties in both sexes 2 weeks postfracture, but declines were greater in males. Muscle contractile force, mass, and fiber size decreased primarily in the fractured limb at 2 weeks postfracture and females showed a trend toward greater muscle loss. Bone and muscle properties recovered by 6 weeks postfracture. Overall, postfracture systemic bone loss is greater in men, which may contribute to sex differences in subsequent fracture risk. In both sexes, muscle loss is primarily confined to the injured limb and fracture may induce greater inflammation in males.


Assuntos
Doenças Ósseas Metabólicas , Fraturas do Fêmur , Caracteres Sexuais , Animais , Densidade Óssea , Feminino , Fraturas do Fêmur/complicações , Fêmur/metabolismo , Fêmur/patologia , Interleucina-1beta , Interleucina-6 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Músculos/patologia , Fator de Necrose Tumoral alfa
18.
J Orthop Res ; 40(4): 891-900, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34129247

RESUMO

We previously showed that femur fracture in mice caused a reduction in bone volume at distant skeletal sites within 2 weeks post-fracture. Osteocytes also have the ability to remodel their surrounding bone matrix through perilacunar/canalicular remodeling (PLR). If PLR is altered systemically following fracture, this could affect bone mechanical properties and increase fracture risk at all skeletal sites. In this study, we investigated whether lacunar-canalicular microstructure and the rate of PLR are altered in the contralateral limb following femoral fracture in mice. We hypothesized that femoral fracture would accelerate PLR by 2 weeks postfracture, followed by partial recovery by 4 weeks. We used histological evaluation and high-resolution microcomputed tomography to quantify the morphology of the lacunar-canalicular network at the contralateral tibia, and we used quantitative real-time polymerase chain reaction (RT-PCR) and RNA-seq to measure the expression of PLR-associated genes in the contralateral femur. We found that at both 2 and 4 weeks postfracture, canalicular width was significantly increased by 18.6% and 16.6%, respectively, in fractured mice relative to unfractured controls. At 3 days and 4 weeks post-fracture, we observed downregulation of PLR-associated genes; RNA-seq analysis at 3 days post-fracture showed a deceleration of bone formation and mineralization in the contralateral limb. These data demonstrate notable canalicular changes following fracture that could affect bone mechanical properties. These findings expand our understanding of systemic effects of fracture and how biological and structural changes at distant skeletal sites may contribute to increased fracture risk following an acute injury.


Assuntos
Remodelação Óssea , Fraturas do Fêmur , Animais , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/metabolismo , Fêmur , Camundongos , Osteócitos/metabolismo , Microtomografia por Raio-X
19.
Pharmaceutics ; 13(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34575579

RESUMO

Joint trauma results in the production of inflammatory cytokines that stimulate the secretion of catabolic enzymes, which degrade articular cartilage. Molecular fragments of the degraded articular cartilage further stimulate inflammatory cytokine production, with this process eventually resulting in post-traumatic osteoarthritis (PTOA). The loss of matrix component aggrecan occurs early in the progression of PTOA and results in the loss of compressive stiffness in articular cartilage. Aggrecan is highly sulfated, associates with hyaluronic acid (HA), and supports the compressive stiffness in cartilage. Presented here, we conjugated the HA-binding peptide GAHWQFNALTVRGSG (GAH) to anionic nanoparticles (hNPs). Nanoparticles conjugated with roughly 19 GAH peptides, termed 19 GAH-hNP, bound to HA in solution and increased the dynamic viscosity by 94.1% compared to an HA solution treated with unconjugated hNPs. Moreover, treating aggrecan-depleted (AD) cartilage explants with 0.10 mg of 19 GAH-hNP restored the cartilage compressive stiffness to healthy levels six days after a single nanoparticle treatment. Treatment of AD cartilage with 0.10 mg of 19 GAH-hNP inhibited the degradation of articular cartilage. Treated AD cartilage had 409% more collagen type II and 598% more GAG content than untreated-AD explants. The 19 GAH-hNP therapeutic slowed ECM degradation in AD cartilage explants, restored the compressive stiffness of damaged cartilage, and showed promise as a localized treatment for PTOA.

20.
Cells ; 10(6)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200880

RESUMO

Articular cartilage is a connective tissue lining the surfaces of synovial joints. When the cartilage severely wears down, it leads to osteoarthritis (OA), a debilitating disease that affects millions of people globally. The articular cartilage is composed of a dense extracellular matrix (ECM) with a sparse distribution of chondrocytes with varying morphology and potentially different functions. Elucidating the molecular and functional profiles of various chondrocyte subtypes and understanding the interplay between these chondrocyte subtypes and other cell types in the joint will greatly expand our understanding of joint biology and OA pathology. Although recent advances in high-throughput OMICS technologies have enabled molecular-level characterization of tissues and organs at an unprecedented resolution, thorough molecular profiling of articular chondrocytes has not yet been undertaken, which may be in part due to the technical difficulties in isolating chondrocytes from dense cartilage ECM. In this study, we profiled articular cartilage from healthy and injured mouse knee joints at a single-cell resolution and identified nine chondrocyte subtypes with distinct molecular profiles and injury-induced early molecular changes in these chondrocytes. We also compared mouse chondrocyte subpopulations to human chondrocytes and evaluated the extent of molecular similarity between mice and humans. This work expands our view of chondrocyte heterogeneity and rapid molecular changes in chondrocyte populations in response to joint trauma and highlights potential mechanisms that trigger cartilage degeneration.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Osteoartrite do Joelho/metabolismo , Animais , Cartilagem Articular/patologia , Humanos , Traumatismos do Joelho/complicações , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/patologia , RNA-Seq , Análise de Célula Única , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...