Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269257

RESUMO

BackgroundThe combined impact of immunity and SARS-CoV-2 variants on viral kinetics during infections has been unclear. MethodsWe characterized 2,875 infections from the National Basketball Association occupational health cohort identified between June 2020 and January 2022 using serial RT-qPCR testing. Logistic regression and semi-mechanistic viral RNA kinetics models were used to quantify the effect of variant, symptom status, age, infection history, vaccination and antibody titer to founder SARS-CoV-2 strain on the duration of potential infectiousness and overall viral kinetics. The frequency of viral rebounds was quantified under multiple cycle threshold (Ct) value-based definitions. ResultsAmong individuals detected partway through their infection, 51.0% (95% credible interval [CrI]: 48.2-53.6%) remained potentially infectious (Ct<30) five days post detection, with small differences across variants and vaccination history. Only seven viral rebounds (0.7%; N=999) were observed, with rebound defined as 3+ days with Ct<30 following an initial clearance of 3+ days with Ct[≥]30. High antibody titers against the founder SARS-CoV-2 strain predicted lower peak viral loads and shorter durations of infection. Among Omicron BA.1 infections, boosted individuals had lower pre-booster antibody titers and longer clearance times than non-boosted individuals. ConclusionsSARS-CoV-2 viral kinetics are partly determined by immunity and variant but dominated by individual-level variation. Since booster vaccination protects against infection, longer clearance times for BA.1-infected, boosted individuals may reflect a less effective immune response, more common in older individuals, that increases infection risk and reduces viral RNA clearance rate. The shifting landscape of viral kinetics underscores the need for continued monitoring to optimize isolation policies and to contextualize the health impacts of therapeutics and vaccines. FundingSupported in part by CDC contract 200-2016-91779, Emergent Ventures at the Mercatus Center, the Huffman Family Donor Advised Fund, the MorrisSinger Fund, the National Basketball Association, and the National Basketball Players Association.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21251535

RESUMO

BackgroundThe alpha and delta SARS-CoV-2 variants have been responsible for major recent waves of COVID-19 despite increasing vaccination rates. The reasons for the increased transmissibility of these variants and for the reduced transmissibility of vaccine breakthrough infections are unclear. MethodsWe quantified the course of viral proliferation and clearance for 173 individuals with acute SARS-CoV-2 infections using longitudinal quantitative RT-PCR tests conducted using anterior nares/oropharyngeal samples (n = 199,941) as part of the National Basketball Associations (NBA) occupational health program between November 28th, 2020, and August 11th, 2021. We measured the duration of viral proliferation and clearance and the peak viral concentration separately for individuals infected with alpha, delta, and non-variants of interest/variants of concern (non-VOI/VOC), and for vaccinated and unvaccinated individuals. ResultsThe mean viral trajectories of alpha and delta infections resembled those of non-VOI/VOC infections. Vaccine breakthrough infections exhibited similar proliferation dynamics as infections in unvaccinated individuals (mean peak Ct: 20.5, 95% credible interval [19.0, 21.0] vs. 20.7 [19.8, 20.2], and mean proliferation time 3.2 days [2.5, 4.0] vs. 3.5 days [3.0, 4.0]); however, vaccinated individuals exhibited faster clearance (mean clearance time: 5.5 days [4.6, 6.6] vs. 7.5 days [6.8, 8.2]). ConclusionsAlpha, delta, and non-VOI/VOC infections feature similar viral trajectories. Acute infections in vaccinated and unvaccinated people feature similar proliferation and peak Ct, but vaccinated individuals cleared the infection more quickly. Viral concentrations do not fully explain the differences in infectiousness between SARS-CoV-2 variants, and mitigation measures are needed to limit transmission from vaccinated individuals.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20217042

RESUMO

BackgroundSARS-CoV-2 infections are characterized by viral proliferation and clearance phases and can be followed by low-level persistent viral RNA shedding. The dynamics of viral RNA concentration, particularly in the early stages of infection, can inform clinical measures and interventions such as test-based screening. MethodsWe used prospective longitudinal RT-qPCR testing to measure the viral RNA trajectories for 68 individuals during the resumption of the 2019-20 National Basketball Association season. For 46 individuals with acute infections, we inferred the peak viral concentration and the duration of the viral proliferation and clearance phases. FindingsAccording to our mathematical model, we found that viral RNA concentrations peaked an average of 3.3 days (95% credible interval [2.5, 4.2]) after first possible detectability at a cycle threshold value of 22.3 [20.5, 23.9]. The viral clearance phase lasted longer for symptomatic individuals (10.9 days [7.9, 14.4]) than for asymptomatic individuals (7.8 days [6.1, 9.7]). A second test within 2 days after an initial positive PCR substantially improves certainty about a patients infection phase. The effective sensitivity of a test intended to identify infectious individuals declines substantially with test turnaround time. ConclusionsSARS-CoV-2 viral concentrations peak rapidly regardless of symptoms. Sequential tests can help reveal a patients progress through infection stages. Frequent rapid-turnaround testing is needed to effectively screen individuals before they become infectious.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...