Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(5): E689-E696, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096387

RESUMO

Although it has been known for more than 60 years that the cause of sickle cell disease is polymerization of a hemoglobin mutant, hydroxyurea is the only drug approved for treatment by the US Food and Drug Administration. This drug, however, is only partially successful, and the discovery of additional drugs that inhibit fiber formation has been hampered by the lack of a sensitive and quantitative cellular assay. Here, we describe such a method in a 96-well plate format that is based on laser-induced polymerization in sickle trait cells and robust, automated image analysis to detect the precise time at which fibers distort ("sickle") the cells. With this kinetic method, we show that small increases in cell volume to reduce the hemoglobin concentration can result in therapeutic increases in the delay time prior to fiber formation. We also show that, of the two drugs (AES103 and GBT440) in clinical trials that inhibit polymerization by increasing oxygen affinity, one of them (GBT440) also inhibits sickling in the absence of oxygen by two additional mechanisms.


Assuntos
Antidrepanocíticos/farmacologia , Tamanho Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Furaldeído/análogos & derivados , Anemia Falciforme/terapia , Eritrócitos/fisiologia , Furaldeído/farmacologia , Hemoglobina Falciforme/metabolismo , Humanos , Cinética , Oxigênio
2.
Biophys J ; 88(2): 1371-6, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15542552

RESUMO

To understand the physical basis of the wide variety of shapes of deoxygenated red cells from patients with sickle cell anemia, we have measured the formation rate and volume distribution of the birefringent domains of hemoglobin S fibers. We find that the domain formation rate depends on the approximately 80th power of the protein concentration, compared to approximately 40th power for the concentration dependence of the reciprocal of the delay time that precedes fiber formation. These remarkably high concentration dependences, as well as the exponential distribution of domain volumes, can be explained by the previously proposed double nucleation model in which homogeneous nucleation of a single fiber triggers the formation of an entire domain via heterogeneous nucleation and growth. The enormous sensitivity of the domain formation rate to intracellular hemoglobin S concentration explains the variable cell morphology and why rapid polymerization results in cells that do not appear sickled at all.


Assuntos
Anemia Falciforme/sangue , Eritrócitos/química , Eritrócitos/ultraestrutura , Hemoglobina Falciforme/química , Hemoglobina Falciforme/ultraestrutura , Modelos Químicos , Modelos Moleculares , Anemia Falciforme/patologia , Tamanho Celular , Células Cultivadas , Dimerização , Géis/química , Hemoglobina Falciforme/análise , Humanos , Cinética , Complexos Multiproteicos/análise , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Conformação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA