Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Biomedicines ; 12(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38540293

RESUMO

The extent and depth of burn injury may mandate temporary use of cadaver skin (allograft) to protect the wound and allow the formation of granulation tissue while split-thickness skin grafts (STSGs) are serially harvested from the same donor areas. However, allografts are not always available and have a high cost, hence the interest in identifying more economical, readily available products that serve the same function. This study evaluated intact fish skin graft (IFSG) as a temporary cover to prepare the wound bed for STSG application. Thirty-six full-thickness (FT) 5 × 5 cm burn wounds were created on the dorsum of six anesthetized Yorkshire pigs on day -1. To mimic the two-stage clinical situation, on day 0, wounds were excised down to a bleeding wound bed and a temporary cover (either IFSG or cadaver porcine skin) was applied; then, on day 7, wounds were debrided to a viable wound bed prior to the application of autologous 1.5:1 meshed STSG (mSTSG). Rechecks were performed on days 14, 21, 28, 45, and 60 with digital images, non-invasive measurements, and punch biopsies. The IFSG created a granulated wound bed receptive to the application of an mSTSG. FT burn wounds treated with an IFSG had similar outcome measures, including contraction rates, trans-epidermal water loss (TEWL) measurements, hydration, and blood perfusion levels, compared to cadaver skin-treated burn wounds. Pathology scoring indicated significant differences between the allograft- and IFSG-treated wounds on day 7, with the IFSG having increased angiogenesis, granulation tissue formation, and immune cells. Pathology scoring indicated no significant differences once mSTSGs were applied to wounds. The IFSG performed as well as cadaver skin as a temporary cover and was not inferior to the standard of care, suggesting the potential to transition IFSGs into clinical use for burns.

2.
J Biomed Opt ; 29(2): 020901, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361506

RESUMO

Significance: Over the past decade, machine learning (ML) algorithms have rapidly become much more widespread for numerous biomedical applications, including the diagnosis and categorization of disease and injury. Aim: Here, we seek to characterize the recent growth of ML techniques that use imaging data to classify burn wound severity and report on the accuracies of different approaches. Approach: To this end, we present a comprehensive literature review of preclinical and clinical studies using ML techniques to classify the severity of burn wounds. Results: The majority of these reports used digital color photographs as input data to the classification algorithms, but recently there has been an increasing prevalence of the use of ML approaches using input data from more advanced optical imaging modalities (e.g., multispectral and hyperspectral imaging, optical coherence tomography), in addition to multimodal techniques. The classification accuracy of the different methods is reported; it typically ranges from ∼70% to 90% relative to the current gold standard of clinical judgment. Conclusions: The field would benefit from systematic analysis of the effects of different input data modalities, training/testing sets, and ML classifiers on the reported accuracy. Despite this current limitation, ML-based algorithms show significant promise for assisting in objectively classifying burn wound severity.


Assuntos
Queimaduras , Pele , Humanos , Imagem Óptica/métodos , Aprendizado de Máquina , Algoritmos , Queimaduras/diagnóstico por imagem
3.
J Surg Res ; 296: 447-455, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320364

RESUMO

INTRODUCTION: Thermal injuries are caused by exposure to a wide variety of agents including heat, electricity, radiation, chemicals, and friction. Early intervention can decrease injury severity by preventing excess inflammation and mitigating burn wound progression for improved healing outcomes. Previous studies have demonstrated that cannabinoids can trigger anti-inflammatory responses and promote wound closure. Therefore, the purpose of this study was to investigate whether a topical application of Noneuphoric Phytocannabinoid Elixir 14 (NEPE14) containing a full complement of phytocannabinoids (< 0.3% delta-9-tetrahydrocannabinol or cannabidiol) and other phytochemicals would mitigate burn wound progression in the treatment of deep partial-thickness burn wounds. METHODS: Deep partial-thickness burns were created on the dorsum of four anesthetized pigs and treated with NEPE14, Vehicle control, Silverlon, or gauze. The burns were assessed on postburn days 4, 7, and 14. Assessments consisted of digital photographs, Laser-Speckle imagery (blood perfusion), MolecuLight imagery (qualitative bacterial load), and biopsies for histology and immunohistochemistry (interleukin six and tumor necrosis factor-α). RESULTS: Topical treatment with NEPE14 significantly (P < 0.001) decreased inflammation (interleukin six and tumor necrosis factor-α) in comparison to control groups. It was also demonstrated that the reduction in inflammation led to mitigation of burn wound progression. In terms of wound healing and presence of bacteria, no statistically significant differences were observed. CONCLUSIONS: Topical treatment of deep partial-thickness burns with NEPE14 decreased wound inflammation and mitigated burn wound progression in comparison to control treatments.


Assuntos
Queimaduras , Fator de Necrose Tumoral alfa , Suínos , Animais , Cicatrização/fisiologia , Queimaduras/complicações , Queimaduras/terapia , Queimaduras/patologia , Inflamação , Interleucinas
4.
Mil Med ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150385

RESUMO

INTRODUCTION: If left untreated, burn injuries can deepen or progress in depth within the first 72 hours after injury as a result of increased wound inflammation, subsequently worsening healing outcomes. This can be especially detrimental to warfighters who are constrained to resource-limited environments with delayed evacuation times to higher roles of care and more effective treatment. Preventing this burn progression at the point of injury has the potential to improve healing outcomes but requires a field-deployable therapy and delivery system. Subcutaneous therapies known to treat inflammation delivered local to the wound site may prove to be one such avenue for success. MATERIALS AND METHODS: Seven Yorkshire-cross swine received partial-thickness burn injuries using a previously established contact burn model. Each animal received one of the seven therapies: (1) saline, (2) heparin, (3) ibuprofen, (4) erythropoietin, (5) resolvin, (6) rapamycin, and (7) placental extract, all of which are either currently employed or are experimental in field use and indicated to treat inflammation. Treatments were delivered subcutaneously on the day of injury and 24 hours post-injury to simulate a prolonged field care scenario, before potential evacuation. Animals and wound development were observed for 28 days before euthanasia. Throughout the course of the study, wounds were observed macroscopically via non-invasive imaging. Histological analyses provided the critical metric of burn progression. Treatment success criteria were designated as the ability to prevent burn progression past 80% of the dermal depth in two of the three treated wounds, a clinically relevant metric of burn progression. RESULTS: It was determined that the applied model successfully created reproducible partial-thickness burn injuries in this porcine study. No significant differences with regard to lateral wound size or the rate of lateral wound closure were observed in any treatments. Several treatments including resolvin, rapamycin, ibuprofen, and erythropoietin successfully reduced burn progression to less than 80% of the dermal depth in two of the three wounds, 24 hours after injury. CONCLUSIONS: This report employs an established model of porcine contact burn injury in order to test the ability of local subcutaneous delivery of therapeutics to prevent burn progression at the point of injury, via what is believed to be the inhibition of inflammation. Several treatments successfully prevented burn progression to a full-thickness injury, potentially improving wound healing outcomes in a simulated battlefield scenario. Subcutaneously administered therapies combating burn-induced inflammation at the point of injury may serve as a field-deployable treatment modality to improve warfighter recovery and return to duty.

5.
Mil Med ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776542

RESUMO

INTRODUCTION: Immediate evacuation of burn casualties can be challenging in austere environments, and it is predicted to be even more difficult in future multi-domain battlespaces against near-peer foes. Therefore, a need exists to treat burn wounds at the point of injury to protect the exposed injury for an extended period. In this study, we compare two commercially available FDA-approved therapies to the current gold standard of care (GSOC), excisional debridement followed by the application of split-thickness skin graft, and the standard for prolonged field care, silver sulfadiazine (SSD) cream. The shelf-stable therapies evaluated were irradiated human skin (IHS) allograft and polylactic acid (PLA). Our objective was to study whether they have the potential capability to reduce the need for evacuation to a burn center for surgical intervention so that the combat power can be preserved in the field. MATERIALS AND METHODS: Sixteen burns (50 cm2) were created on the dorsum of four anesthetized swine. All materials were sterile, but a sterile field was not utilized in order to simulate the prolonged field care setting. The wounds were then treated with PLA, IHS, and SSD cream, and the remaining wounds (designated GSOC) were also treated with SSD cream. On post-operative day (POD) 3, sterile surgical debridement and skin grafting (1:4) were performed on the GSOC wounds. Burn healing was followed for either PODs 10, 14, 21, or 28, wherein one animal was humanely euthanized at each time point; each represented a time point of the healing process. A full-thickness excisional biopsy was taken from each wound immediately after euthanasia to give a cross-section view of the wound edge to edge. Wound healing was determined by the histological analysis of wound re-epithelialization, epidermal thickness, rete ridges, and scar elevation index and macroscopically using noninvasive imaging systems. RESULTS: The PLA and IHS treatments did not need to be reapplied to the wounds during the course of the experiment, unlike SSD, which was reapplied at each assessment time point. In terms of re-epithelialization, on POD 10, IHS and SSD were similar to the GSOC; on POD 14, all treatments were similar; on POD 21, PLA and IHS were similar to SSD; finally, on POD 28, re-epithelialization was similar in all groups. On POD 28, scar elevation index and rete ridges/mm were similar to all groups, and epidermal and dermal thickness for PLA and IHS were similar to GSOC. CONCLUSIONS: This preclinical study demonstrated that the use of the PLA and the IHS dressings resulted in similar outcomes to the GSOC-treated burns in several key metrics of wound healing. These therapies represent a potentially useful tool in current and future battlespaces, where surgical intervention is not possible. The products are lightweight and, more importantly, stable at room temperature for their entire shelf lives. This would allow for easy storage and transport by medical practitioners in the field.

6.
Mil Med ; 188(9-10): 3034-3044, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35512410

RESUMO

INTRODUCTION: Burns are common injuries on the battlefield. Given austere environments, surgical debridement of injured service members is often not feasible in these settings. Delays in surgical debridement create a risk of infection and deranged healing for burn patients. As such, this study attempts to identify the best commercially available off-the-shelf (OTS) therapies with field-deployable potential to improve prolonged field care (PFC) of burn-injured soldiers. METHODS: Deep partial-thickness (DPT) burns (25 cm2) were created on the dorsum of 5 anesthetized pigs utilizing a thermocouple burn device at 100°C for 15 seconds. Nonsurgical debridement was done 1-hour after burn creation using sterile saline water and gauze to remove excess eschar tissue. Animals were then randomized into 5 experimental groups, and OTS therapies were applied to 6 of the 12 created DPT burns. The remaining 6 burns were treated with 1% silver sulfadiazine cream (Ascend Laboratories, LLC, Parsippany, NJ) as the PFC standard of care (SOC) controls. The 5 randomized OTS therapies were: irradiated sterile human skin allograft (IHS), biodegradable temporizing matrix (BTM), polylactic acid skin substitute, hyaluronic acid ester matrix (HAM), and decellularized fish skin graft (FSG). Wounds were serially assessed on post-burn days 3, 7, 14, 21, and 28. Assessments were conducted using a combination of photographs, histology, and quantitative bacteriology. Endpoints included burn wound progression, re-epithelialization, wound contraction, scar elevation index, and colony-forming units (CFU). RESULTS: The analysis demonstrated that by day 3, the FSG prevented burn wound progression the most efficiently. In terms of wound healing, the results showed re-epithelialization percentages close to 100% by day 28 for all treatment groups. No statically significant differences were observed. Quality of healing analyses demonstrated that the BTM-treated wounds had contracted less and the difference to the IHS-treated wounds was statistically significant (P < .05). As regards to antimicrobial properties, the CFU results showed no statistically significant differences between the OTS therapies and the SOC on days 3, 7, and 14. CONCLUSIONS: The impact of Food and Drug Administration-approved OTS therapies was compared to the current PFC SOC for the treatment of DPT burns in a porcine model. Several topical options exist for the management of burns prior to definitive treatment in the operating room and warrant further evaluation. These therapies are actively used on civilian burn counterparts and have far-forward, field-deployable potential for use at the point of injury so that injured service members may not need evacuation to higher roles of care and combat power may be preserved. Our results demonstrated that all the studied OTS therapies performed well when compared to the SOC in terms of burn wound progression, wound healing, quality of healing, and quantitative bacteriology.


Assuntos
Sulfadiazina de Prata , Cicatrização , Humanos , Animais , Suínos , Sulfadiazina de Prata/uso terapêutico , Pele , Cicatriz , Bandagens
7.
J Burn Care Res ; 44(2): 302-310, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048023

RESUMO

Third-degree burns typically result in pronounced scarring and contraction in superficial and deep tissues. Established techniques such as debridement and grafting provide benefit in the acute phase of burn therapy, nevertheless, scar and contraction remain a challenge in deep burns management. Our ambition is to evaluate the effectiveness of novel cell-based therapies, which can be implemented into the standard of care debridement and grafting procedures. Twenty-seven third-degree burn wounds were created on the dorsal area of Red Duroc pig. After 72 h, burns are surgically debrided using a Weck knife. Split-thickness skin grafts (STSGs) were then taken after debridement and placed on burn scars combined with bone marrow stem cells (BM-MSCs). Biopsy samples were taken on days 17, 21, and 45 posttreatment for evaluation. Histological analysis revealed that untreated control scars at 17 days are more raised than burns treated with STSGs alone and/or STSGs with BM-MSCs. Wounds treated with skin grafts plus BM-MSCs appeared thinner and longer, indicative of reduced contraction. qPCR revealed some elevation of α-SMA expression at day 21 and Collagen Iα2 in cells derived from wounds treated with skin grafts alone compared to wounds treated with STSGs + BM-MSCs. We observed a reduction level of TGFß-1 expression at days 17, 21, and 45 in cells derived from wounds treated compared to controls. These results, where the combined use of stem cells and skin grafts stimulate healing and reduce contraction following third-degree burn injury, have a potential as a novel therapy in the clinic.


Assuntos
Queimaduras , Lesões dos Tecidos Moles , Animais , Suínos , Transplante de Pele/métodos , Cicatriz/patologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Queimaduras/cirurgia , Queimaduras/patologia , Células-Tronco , Lesões dos Tecidos Moles/patologia , Pele/patologia
8.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456892

RESUMO

Delayed healing of traumatic wounds often stems from a dysregulated immune response initiated or exacerbated by existing comorbidities, multiple tissue injury or wound contamination. Over decades, approaches towards alleviating wound inflammation have been centered on interventions capable of a collective dampening of various inflammatory factors and/or cells. However, a progressive understanding of immune physiology has rendered deeper knowledge on the dynamic interplay of secreted factors and effector cells following an acute injury. There is a wide body of literature, both in vitro and in vivo, abstracted on the immunomodulatory approaches to control inflammation. Recently, targeted modulation of the immune response via biotechnological approaches and biomaterials has gained attention as a means to restore the pro-healing phenotype and promote tissue regeneration. In order to fully realize the potential of these approaches in traumatic wounds, a critical and nuanced understanding of the relationships between immune dysregulation and healing outcomes is needed. This review provides an insight on paradigm shift towards interventional approaches to control exacerbated immune response following a traumatic injury from an agonistic to a targeted path. We address such a need by (1) providing a targeted discussion of the wound healing processes to assist in the identification of novel therapeutic targets and (2) highlighting emerging technologies and interventions that utilize an immunoengineering-based approach. In addition, we have underscored the importance of immune engineering as an emerging tool to provide precision medicine as an option to modulate acute immune response following a traumatic injury. Finally, an overview is provided on how an intervention can follow through a successful clinical application and regulatory pathway following laboratory and animal model evaluation.


Assuntos
Traumatismo Múltiplo , Cicatrização , Animais , Extremidades , Imunidade , Imunomodulação , Inflamação , Cicatrização/genética
9.
Burns ; 48(4): 799-807, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34696954

RESUMO

A critical need exists for early, accurate diagnosis of burn wound severity to help identify the course of treatment and outcome of the wound. Laser speckle imaging (LSI) is a promising blood perfusion imaging approach, but it does not account for changes in tissue optical properties that can occur with burn wounds, which are highly dynamic environments. Here, we studied optical property dynamics following burn injury and debridement and the associated impact on interpretation of LSI measurements of skin perfusion. We used spatial frequency domain imaging (SFDI) measurements of tissue optical properties to study the impact of burn-induced changes in these properties on LSI measurements. An established preclinical porcine model of burn injury was used (n = 8). SFDI and LSI data were collected from burn wounds of varying severity. SFDI measurements demonstrate that optical properties change in response to burn injury in a porcine model. We then apply theoretical modeling to demonstrate that the measured range of optical property changes can affect the interpretation of LSI measurements of blood flow, but this effect is minimal for most of the measured data. Collectively, our results indicate that, even with a dynamic burn wound environment, blood-flow measurements with LSI can serve as an appropriate strategy for accurate assessment of burn severity.


Assuntos
Queimaduras , Animais , Queimaduras/diagnóstico por imagem , Humanos , Imagem de Contraste de Manchas a Laser , Imagem Óptica/métodos , Perfusão , Imagem de Perfusão , Pele/irrigação sanguínea , Pele/diagnóstico por imagem , Suínos
10.
Technol Cancer Res Treat ; 20: 15330338211039681, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34613833

RESUMO

Ionizing radiation causes injury to the skin that produces a complex clinical presentation that is managed by various paradigms without clear standards. The situation is further complicated by the fact that clinicians and researchers often use different terms and billing codes to describe the spectrum of cutaneous injury. There is, however, general agreement between the two most commonly-used diagnostic scales, the Radiation Therapy Oncology Group and the Common Terminology Criteria for Adverse Events, and in their use to describe skin injury following radiation therapy. These scales are typically used by radiation oncologists to quantify radiation dermatitis, a component of the radiation-related disorders of the skin and subcutaneous tissue family of diagnoses. In rare cases, patients with severe injury may require treatment by wound care or burn specialists, in which case the disease is described as a "radiation burn" and coded as a burn or corrosion. Further compounding the issue, most US government agencies use the term Cutaneous Radiation Injury to indicate skin damage resulting from large, whole-body exposures. In contrast, the US Food and Drug Administration approves products for radiation dermatitis or "burns caused by radiation oncology procedures." A review of the literature and comparison of clinical presentations shows that each of these terms represents a similar injury, and can be used interchangeably. Herein we provide a comparative review of the commonly used terminology for radiation-induced skin injury. Further, we recommend standardization across clinicians, providers, and researchers involved in the diagnosis, care, and investigation of radiation-induced skin injury. This will facilitate collaboration and broader inclusion criteria for grant-research and clinical trials and will assist in assessing therapeutic options particularly relevant to patient skin pigmentation response differences.


Assuntos
Queimaduras/etiologia , Radiodermite/classificação , Radiodermite/etiologia , Terminologia como Assunto , Humanos , Radiação Ionizante
12.
Transfusion ; 61 Suppl 1: S234-S242, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34269435

RESUMO

BACKGROUND: Acetaminophen (APAP) is a widely self-prescribed analgesic for mild to moderate pain, but overdose or repeat doses can lead to liver injury and death. Kalyra Pharmaceuticals has developed a novel APAP analog, KP-1199, currently in Phase 1 clinical studies, which lacks hepatotoxicity. In this study, the authors evaluated the antinociceptive effect of KP-1199 on thermal injury-induced nociceptive behaviors as well as hemostatic parameters using human blood samples. METHODS: Full-thickness thermal injury was induced in anesthetized adult male Sprague-Dawley rats. On day 7 post-injury, KP-1199 (30 and 60 mg/kg) or APAP (60 mg/kg) was administered orally. Antinociception of KP-1199 and APAP were assessed at multiple time points using Hargreaves' test. In separate experiments, human whole blood was collected and treated with either KP-1199, APAP, or Vehicle (citrate buffer) at 1× (214 µg/ml) and 10× (2140 µg/ml) concentrations. The treated blood samples were assessed for: clotting function, thrombin generation, and platelet activation. RESULTS: APAP did not produce antinociceptive activity. KP-1199 treatment significantly increased the nociceptive threshold, and the antinociceptive activity persisted up to 3 h post-treatment. In human samples, 10× APAP caused significantly prolonged clotting times and increased platelet activation, whereas KP-1199 had caused no negative effects on either parameter tested. CONCLUSION: These results suggest that KP-1199 possesses antinociceptive activity in a rat model of thermal injury. Since KP-1199 does not induce platelet activation or inhibit coagulation, it presents an attractive alternative to APAP for analgesia, especially for battlefield or surgical scenarios where blood loss and blood clotting are of concern.


Assuntos
Acetaminofen/análogos & derivados , Acetaminofen/farmacologia , Analgésicos/química , Analgésicos/farmacologia , Hemostasia/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Acetaminofen/administração & dosagem , Acetaminofen/uso terapêutico , Administração Oral , Analgésicos/administração & dosagem , Analgésicos/uso terapêutico , Animais , Humanos , Hiperalgesia/sangue , Masculino , Ratos Sprague-Dawley
13.
Stem Cell Res Ther ; 12(1): 270, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957963

RESUMO

BACKGROUND: Patients with severe burn injury (over 20% of the total body surface area) experience profound hypermetabolism which significantly prolongs wound healing. Adipose-derived stem cells (ASCs) have been proposed as an attractive solution for treating burn wounds, including the potential for autologous ASC expansion. While subcutaneous adipocytes display an altered metabolic profile post-burn, it is not known if this is the case with the stem cells associated with the adipose tissue. METHODS: ASCs were isolated from discarded burn skin of severely injured human subjects (BH, n = 6) and unburned subcutaneous adipose tissue of patients undergoing elective abdominoplasty (UH, n = 6) and were analyzed at passages 2, 4, and 6. Flow cytometry was used to quantify ASC cell surface markers CD90, CD105, and CD73. Mitochondrial abundance and reactive oxygen species (ROS) production were determined with MitoTracker Green and MitoSOX Red, respectively, while JC-10 Mitochondrial Membrane Potential Assays were also performed. Mitochondrial respiration and glycolysis were analyzed with a high-resolution respirometer (Seahorse XFe24 Analyzer). RESULTS: There was no difference in age between BH and UH (34 ± 6 and 41 ± 4 years, respectively, P = 0.49). While passage 2 ASCs had lower ASC marker expression than subsequent passages, there were no significant differences in the expression between BH and UH ASCs. Similarly, no differences in mitochondrial abundance or membrane potential were found amongst passages or groups. Two-way ANOVA showed a significant effect (P < 0.01) of passaging on mitochondrial ROS production, with increased ROS in BH ASCs at later passages. Oxidative phosphorylation capacities (leak and maximal respiration) increased significantly in BH ASCs (P = 0.035) but not UH ASCs. On the contrary, basal glycolysis significantly decreased in BH ASCs (P = 0.011) with subsequent passaging, but not UH ASCs. CONCLUSIONS: In conclusion, ASCs from burned individuals become increasingly oxidative and less glycolytic upon passaging when compared to ASCs from unburned patients. This increase in oxidative capacities was associated with ROS production in later passages. While the autologous expansion of ASCs holds great promise for treating burned patients with limited donor sites, the potential negative consequences of using them require further investigation.


Assuntos
Adipócitos , Tecido Adiposo , Diferenciação Celular , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Células-Tronco
14.
J Burn Care Res ; 42(5): 870-879, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34057993

RESUMO

Adipose stem cells (ASCs) have shown therapeutic promise for various conditions, including burn injury. While ASCs have immunomodulatory properties, concerns exist over pro-coagulant activity after intravenous (IV) administration. In the present study, we examined IV human ASC delivery in terms of coagulation, organ function, and inflammation in a 40% total body surface area (TBSA) swine burn model. Anesthetized female Yorkshire swine were burned and randomized to receive 15 ml/kg Lactated Ringer's containing: no ASCs; a low dose (5 × 105 ASCs/kg); or a high dose (5 × 106 ASCs/kg). For biochemical analysis, blood was collected at baseline (BL), 3, 6, 12, and 24 h post-burn, while kidney and liver tissue was collected post-euthanasia. A significant, but transient, effect of ASCs was seen on prothrombin times and INR, wherein low doses revealed slight hypercoagulation. Burns increased partial thromboplastin time, fibrinogen, and d-dimer levels, which was unchanged with ASC administration. ASCs tended to exacerbate increases in bilirubin at 3 h, but this didn't reach statistical significance. A significant effect of ASCs on creatinine and BUN was seen, wherein low doses elevated levels at 24 h (creatinine, P = 0.0012; BUN, P = 0.0195). Hepatic and renal TUNEL staining were similar for all groups. A dose-dependent decrease in IL-8 was observed, while low doses significantly increased IL-1RA at 3h (P = 0.050), IL-12 at 12h (P = 0.021) and IL-6 at 24 h post-burn (P = 0.035). IV administration of xenogeneic ASCs slightly increased coagulation, but effects on burn-induced renal and hepatic dysfunction effects were minimal. Despite some significant immunomodulation, organ dysfunction effects were modest. Collectively, this study provides evidence to be skeptical about xenogeneic ASC administration in regards to burns.


Assuntos
Tecido Adiposo/citologia , Modelos Animais de Doenças , Transplante de Células-Tronco Mesenquimais/métodos , Transplante de Células-Tronco/métodos , Cicatrização/fisiologia , Administração Intravenosa , Animais , Superfície Corporal , Queimaduras , Técnicas de Cultura de Células , Suínos
15.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557424

RESUMO

Thermal injuries are caused by exposure to a variety of sources, and split thickness skin grafts are the gold standard treatment for severe burns; however, they may be impossible when there is no donor skin available. Large total body surface area burns leave patients with limited donor site availability and create a need for treatments capable of achieving early and complete coverage that can also retain normal skin function. In this preclinical trial, two cellular and tissue based products (CTPs) are evaluated on twenty-four 5 × 5 deep partial thickness (DPT) burn wounds. Using appropriate pain control methods, DPT burn wounds were created on six anesthetized Yorkshire pigs. Wounds were excised one day post-burn and the bleeding wound beds were subsequently treated with omega-3-rich acellular fish skin graft (FSG) or fetal bovine dermis (FBD). FSG was reapplied after 7 days and wounds healed via secondary intentions. Digital images, non-invasive measurements, and punch biopsies were acquired during rechecks performed on days 7, 14, 21, 28, 45, and 60. Multiple qualitative measurements were also employed, including re-epithelialization, contraction rates, hydration, laser speckle, and trans-epidermal water loss (TEWL). Each treatment produced granulated tissue (GT) that would be receptive to skin grafts, if desired; however, the FSG induced GT 7 days earlier. FSG treatment resulted in faster re-epithelialization and reduced wound size at day 14 compared to FBD (50.2% vs. 23.5% and 93.1% vs. 106.7%, p < 0.005, respectively). No differences in TEWL measurements were observed. The FSG integrated into the wound bed quicker as evidenced by lower hydration values at day 21 (309.7 vs. 2500.4 µS, p < 0.05) and higher blood flow at day 14 (4.9 vs. 3.1 fold change increase over normal skin, p < 0.005). Here we show that FSG integrated faster without increased contraction, resulting in quicker wound closure without skin graft application which suggests FSG improved burn wound healing over FBD.


Assuntos
Derme Acelular/provisão & distribuição , Queimaduras/cirurgia , Transplante de Pele/métodos , Cicatrização , Animais , Queimaduras/patologia , Feminino , Peixes , Suínos
16.
Biomolecules ; 10(10)2020 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992554

RESUMO

Acute and chronic skin wounds due to burns, pressure injuries, and trauma represent a substantial challenge to healthcare delivery with particular impacts on geriatric, paraplegic, and quadriplegic demographics worldwide. Nevertheless, the current standard of care relies extensively on preventive measures to mitigate pressure injury, surgical debridement, skin flap procedures, and negative pressure wound vacuum measures. This article highlights the potential of adipose-, blood-, and cellulose-derived products (cells, decellularized matrices and scaffolds, and exosome and secretome factors) as a means to address this unmet medical need. The current status of this research area is evaluated and discussed in the context of promising avenues for future discovery.


Assuntos
Queimaduras/terapia , Exossomos/transplante , Hidrogéis/uso terapêutico , Cicatrização/genética , Queimaduras/patologia , Terapia Baseada em Transplante de Células e Tecidos/tendências , Celulose/uso terapêutico , Exossomos/genética , Humanos , Hidrogéis/química , Transplante de Células-Tronco Mesenquimais/tendências , Células-Tronco Mesenquimais/citologia , Pele/crescimento & desenvolvimento , Pele/lesões , Pele/metabolismo
17.
Burns Open ; 4(2): 67-71, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32832745

RESUMO

While visual assessment by a clinician is the standard of care for burn severity evaluations, new technologies at various stages of development are attempting to add objectivity to this practice by quantifying burn severity. Assessment accuracy generally improves after the burn injury has progressed, but early assessments that correctly identify superficial partial and deep partial burns have the potential to lead to more prompt treatments and shorter recovery times. To date, Spatial Frequency Domain Imaging (SFDI) has only been used in animal models of burns, but has shown the potential to categorize burns accurately at earlier time points. Here we examine the potential for SFDI to assess burn severity in clinical patients. We also utilize Laser Speckle Imaging (LSI), an FDA cleared non-invasive imaging technology that typically measures blood perfusion in order to evaluate burns in clinical patients. We present a case series of two patients, both with partial thickness burns of varying severity. Partial thickness burns are often difficult for clinicians to categorize based on visual appearance alone. SFDI and LSI were both performed on each patient at approximately 24 and 72 h after their respective burn incidents. Each technique was able to render spatially resolved information that enabled improved assessment accuracy for each burn. This represents the first publication of SFDI applied to clinical burn patients after being successfully utilized in animal models, and highlights the potential for SFDI as a feasible tool for the timely categorization of burn severity.

18.
J Burn Care Res ; 41(5): 1015-1028, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32615590

RESUMO

Necrotic tissue generated by a thermal injury is typically removed via surgical debridement. However, this procedure is commonly associated with blood loss and the removal of viable healthy tissue. For some patients and contexts such as extended care on the battlefield, it would be preferable to remove devitalized tissue with a nonsurgical debridement agent. In this paper, a proprietary debridement gel (SN514) was evaluated for the ability to debride both deep-partial thickness (DPT) and full-thickness burn wounds using an established porcine thermal injury model. Burn wounds were treated daily for 4 days and visualized with both digital imaging and laser speckle imaging. Strip biopsies were taken at the end of the procedure. Histological analyses confirmed a greater debridement of the porcine burn wounds by SN514 than the vehicle-treated controls. Laser speckle imaging detected significant increases in the perfusion status after 4 days of SN514 treatment on DPT wounds. Importantly, histological analyses and clinical observations suggest that SN514 gel treatment did not damage uninjured tissue as no edema, erythema, or inflammation was observed on intact skin surrounding the treated wounds. A blinded evaluation of the digital images by a burn surgeon indicated that SN514 debrided more necrotic tissue than the control groups after 1, 2, and 3 days of treatment. Additionally, SN514 gel was evaluated using an in vitro burn model that used human discarded skin. Treatment of human burned tissue with SN514 gel resulted in greater than 80% weight reduction compared with untreated samples. Together, these data demonstrate that SN514 gel is capable of debriding necrotic tissue and suggest that SN514 gel could be a useful option for austere conditions, such as military multi-domain operations and prolonged field care scenarios.


Assuntos
Queimaduras/terapia , Desbridamento/métodos , Metaloproteases/uso terapêutico , Animais , Queimaduras/patologia , Modelos Animais de Doenças , Feminino , Hidrogéis , Suínos , Cicatrização
19.
J Pain ; 21(1-2): 82-96, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31228575

RESUMO

Research into potentially novel biomarkers for chronic pain development is lacking. microRNAs (miRNAs) are attractive candidates as biomarkers due to their conservation across species, stability in liquid biopsies, and variation that corresponds to a pathologic state. miRNAs can be sorted into extracellular vesicles (EVs) within the cell and released from the site of injury. EVs transfer cargo molecules between cells thus affecting key intercellular signaling pathways. The focus of this study was to determine the plasma derived EV miRNA content in a chronic neuropathic pain rat model. This was accomplished by performing either spinal nerve ligation (SNL; n = 6) or sham (n = 6) surgery on anesthetized male Sprague-Dawley rats. Mechanosensitivity was assessed and plasma derived EV RNA was isolated at baseline (BL), day 3, and 15 postnerve injury. EV extracted small RNA was sequenced followed by differentially expressed (DE) miRNAs and gene target enrichment/signaling pathway analysis performed using R packages and TargetScan/Ingenuity pathway analysis (IPA), respectively. Seven of the DE miRNAs were validated by Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR). The data indicated that SNL rats displayed a time-dependent threshold reduction in response to evoked stimuli from day 3 to day 15 postnerve injury. The data also revealed that 22 and 74 miRNAs at day 3 and 15, respectively, and 33 miRNAs at both day 3 and 15 were uniquely DE between the SNL and sham groups. The key findings from this proposal include (1) the majority of the DE EV miRNAs, which normally function to suppress inflammation, were downregulated, and (2) several of the plasma derived DE EV miRNAs reflect previously observed changes in the injured L5 nerve. The plasma derived DE EV miRNAs regulate processes important in the development and maintenance of neuropathic pain states and potentially serve as key regulators, biomarkers, and targets in the progression and treatment of chronic neuropathic pain. PERSPECTIVE: This article describes the DE miRNA content of plasma derived EVs, comparing neuropathic pain to normal conditions. This data indicates that EV miRNAs may be important in nociception and may also serve as biomarkers for chronic pain. These results encourage further research on EV miRNAs in chronic neuropathic pain sufferers.


Assuntos
Dor Crônica/sangue , Vesículas Extracelulares/metabolismo , Plexo Lombossacral/lesões , MicroRNAs/sangue , Neuralgia/sangue , Nociceptividade/fisiologia , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Regulação para Baixo , Masculino , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA
20.
Tissue Eng Part A ; 26(5-6): 265-278, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31774034

RESUMO

Keratin is a natural material that can be derived from the cortex of human hair. Our group had previously presented a method for the printed, sequential production of three-dimensional (3D) keratin scaffolds. Using a riboflavin-sodium persulfate-hydroquinone (initiator-catalyst-inhibitor) photosensitive solution, we produced 3D keratin-based constructs through ultraviolet crosslinking in a lithography-based 3D printer. In this study, we have used this bioink to produce a keratin-based construct that is capable of delivering small molecules, providing an environment conducive to healing of dermal burn wounds in vivo, and maintaining stability in customized packaging. We characterized the effects of manufacturing steps, such as lyophilization and gamma irradiation sterilization on the properties of 3D printed keratin scaffolds prepared for in vivo testing. Keratin hydrogels are viable for the uptake and release of contracture-inhibiting Halofuginone, a collagen synthesis inhibitor that has been shown to decrease collagen synthesis in fibrosis cases. This small-molecule delivery provides a mechanism to reduce scarring of severe burn wounds in vitro. In vivo data show that the Halofuginone-laden printed keratin is noninferior to other similar approaches reported in literature. This is indicative that the use of 3D printed keratin is not inhibiting the healing processes, and the inclusion of Halofuginone induces a more organized dermal healing after a burn; in other words, this treatment is slower but improves healing. These studies are indicative of the potential of Halofuginone-laden keratin dressings in dermal wound healing. We aim to keep increasing the complexity of the 3D printed constructs toward the production of complex scaffolds for the treatment and topographical reconstruction of severe burn wounds to the face.


Assuntos
Queimaduras/terapia , Hidrogéis/química , Queratinas/química , Impressão Tridimensional , Animais , Modelos Animais , Suínos , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...