Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38659260

RESUMO

INTRODUCTION: Proteinopathies are a group of diseases where the protein structure has been altered. These alterations are linked to the production of amyloids, which are persistent, organized clumps of protein molecules through inter-molecular interactions. Several disorders, including Alzheimer's and Parkinson's, have been related to the presence of amyloids. Highly ordered beta sheets or beta folds are characteristic of amyloids; these structures can further self- -assemble into stable fibrils. METHOD: Protein aggregation is caused by a wide variety of environmental and experimental factors, including mutations, high pH, high temperature, and chemical modification. Despite several efforts, a cure for amyloidosis has yet to be found. Due to its advantageous semi-conducting characteristics, unique optical features, high surface area-to-volume ratio, biocompatibility, etc., carbon quantum dots (CQDs) have lately emerged as key instruments for a wide range of biomedical applications. To this end, we have investigated the effect of CQDs with a carboxyl group on their surface (CQD-CA) on the in vitro amyloidogenesis of hen egg white lysozyme (HEWL). RESULT: By generating a stable compound that is resistant to fibrillation, our findings show that CQD-CA can suppress amyloid and disaggregate HEWL. In addition, CQD-CA caused the creation of non-toxic spherical aggregates, which generated much less reactive oxygen species (ROS). CONCLUSION: Overall, our results show that more research into amyloidosis treatments, including surface functionalized CQDs, is warranted.

2.
Int J Biol Macromol ; 266(Pt 1): 131123, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537853

RESUMO

Although several bioinks have been developed for 3D bioprinting applications, the lack of optimal printability, mechanical properties, and adequate cell response has limited their practical applicability. Therefore, this work reports the development of a composite bioink consisting of bovine serum albumin (BSA), alginate, and self-assembled nanofibrous polyelectrolyte complex aggregates of gelatin and chitosan (PEC-GC). The nanofibrous PEC-GC aggregates were prepared and incorporated into the bioink in varying concentrations (0 % to 3 %). The bioink samples were bioprinted and crosslinked post-printing by calcium chloride. The average nanofiber diameter of PEC-GC was 62 ± 15 nm. It was demonstrated that PEC-GC improves the printability and cellular adhesion of the developed bioink and modulates the swelling ratio, degradation rate, and mechanical properties of the fabricated scaffold. The in vitro results revealed that the bioink with 2 % PEC-GC had the best post-printing cell viability of the encapsulated MG63 osteosarcoma cells and well oragnized stress fibers, indicating enhanced cell adhesion. The cell viability was >90 %, as observed from the MTT assay. The composite bioink also showed osteogenic potential, as confirmed by the estimation of alkaline phosphatase activity and collagen synthesis assay. This study successfully fabricated a high-shape fidelity bioink with potential in bone tissue engineering.


Assuntos
Alginatos , Bioimpressão , Nanofibras , Polieletrólitos , Impressão Tridimensional , Soroalbumina Bovina , Alicerces Teciduais , Alginatos/química , Soroalbumina Bovina/química , Bioimpressão/métodos , Nanofibras/química , Alicerces Teciduais/química , Humanos , Polieletrólitos/química , Engenharia Tecidual/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Bovinos , Linhagem Celular Tumoral , Gelatina/química , Quitosana/química , Osteogênese/efeitos dos fármacos , Tinta , Adesão Celular/efeitos dos fármacos
3.
Protein J ; 42(6): 728-740, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37803220

RESUMO

The tendency of polypeptide chains to deviate from their conventional protein folding pathway and instead get trapped as off-pathway intermediates, has been a matter of great concern. These off-pathway intermediates eventually lead to the formation of insoluble, ordered fibrillar aggregates called amyloids, which are responsible for a host of neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Type II diabetes. In spite of extensive research, development of an effective therapeutic strategy against amyloidosis still remains elusive. In recent times, carbon quantum dots (CQD) have grabbed the attention of researchers against amyloidogenesis due to their ease of preparation, aqueous soluble nature, unique optical properties, high surface to volume ratio, physio-chemical properties, semi-conducting nature and mainly biocompatible. In the current study, we have reported an easy-to-prepare procedure for synthesis of amine group surface functionalized CQDs from commonly available kitchen spices with anti-oxidant properties. The as-synthesized CQDs were evaluated for their anti-amyloidogenic properties towards Hen Egg White Lysozyme (HEWL). Our results clearly show that the surfaced functionalized CQDs were able to interact with HEWL, thereby forming a stable complex, which was resistant towards amyloid formation and instead lead to the formation of non-toxic globular aggregates.


Assuntos
Diabetes Mellitus Tipo 2 , Pontos Quânticos , Humanos , Muramidase/química , Clara de Ovo , Amiloide/química , Aminas , Agregados Proteicos
4.
J Biomater Sci Polym Ed ; 34(18): 2516-2536, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37768276

RESUMO

Non-union of large bone defects has been an existing clinical problem. 3D extrusion-based bioprinting provides an efficient approach to tackle such problems. This approach enables the use of various biomaterials, cell types and growth factors in developing a superior bone graft that is specific to the defect. In this article, we have designed and printed an ECM mimicking, self-assembled polyelectrolyte complex (PEC) based fibrous bioink using natural polymers like chitosan-polygalacturonic acid (PGA) and other biomaterials - gelatin, laponite and nanohydroxyapatite with a modified 3D printer. The developed bioink possesses a thermo-reversible sol-gel transition at physiological pH and temperature. Here, we demonstrated that post-printing, our fiber-reinforced bioink had significant cell proliferation with cell viability of >80% and negligible cell morbidity. The practicability of developing this self-assembled PEC-based bioink was assessed. Bioink with 4% gelatin (PECHLG4) had optimal printability with a minimal swelling ratio of approximately 3%. The printed scaffold had integrity for a period of 8 days under 0.5 mg/mL lysozyme concentration. We also evaluated the mechanical property of the bioink using compression analysis which gave an elastic modulus of 16 KPa. This combination of natural polymers and nanocomposite, along with a fibrous network of PECs, is itself a novel approach for 3D bioprinting and can be a preliminary proposition for the treatment of large bone defects.


Assuntos
Bioimpressão , Nanocompostos , Engenharia Tecidual , Alicerces Teciduais/química , Polieletrólitos , Gelatina/química , Impressão Tridimensional , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...