Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Toxicol ; 6(2): 131-44, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17303920

RESUMO

Tolerance to clinically important organic nitrates such as nitroglycerin (NTG) has been experimentally related to endothelial dysfunction and vascular oxidative stress. Anti-oxidant enzymes such as the glutathione-S-transferases GSTs) could potentially play a protective role in NTG tolerance. Our previous work showed that an alpha-class glutathione-S-transferase (GSTA4-4) defends against oxidative damage in the vascular wall; therefore, we asked whether overexpression of GSTA4-4 in endothelial cells and smooth muscle cells might alter the development of tolerance to NTG. Stable transfections of mouse pancreatic islet endothelial cells (MS1) with cDNA of mGSTA4-4, and human fetal aortic vascular smooth muscle cells (FLTR) with cDNA of hGSTA4-4 were established. MTT cytotoxicity, apoptosis, nitric oxide (NO) synthases, both endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) and cyclic guanosine mono-phosphate (cGMP) were measured. Endothelial cells overexpressing mGSTA4-4, and smooth muscle cells overexpressing hGSTA4-4 were more resistant to cytotoxic injury by NTG, assessed at 24 h (p < 0.05). In both endothelial and smooth muscle cells, NTG-induced apoptosis was inhibited by GST overexpression. Following dosing in a relevant tolerance-inducing NTG protocol, we found that GSTA4-4-overexpressing cells demonstrated significant downregulation of NOS enzymes; NO release, unchanged by the tolerance protocol in both wild-type and vector-transfected cells, was augmented in GST-overexpressing cells (p < 0.01); cGMP levels in control cells fell, whereas it rose in GSTA4-4-overexpressing cells (p < 0.05). Our results demonstrate that overexpression of GST isozymes can protect endothelial cells and smooth muscle cells against oxidative stress associated with NTG, and markedly alter cellular responses to repeated doses, or tolerance. By manipulating GSTs, physiological tolerance to NTG may be diminished or eliminated.


Assuntos
Glutationa Transferase/fisiologia , Nitroglicerina/farmacologia , Vasodilatadores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular , GMP Cíclico/fisiologia , Tolerância a Medicamentos , Células Endoteliais/efeitos dos fármacos , Glutationa Transferase/efeitos dos fármacos , Glutationa Transferase/genética , Camundongos , Microscopia Confocal , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Peroxinitroso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA