Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37376231

RESUMO

Previously, we have successfully used noninvasive magnetic resonance (MR) and bioluminescence imaging to detect and monitor mPEG-poly(Ala) hydrogel-embedded MIN6 cells at the subcutaneous space for up to 64 days. In this study, we further explored the histological evolution of MIN6 cell grafts and correlated it with image findings. MIN6 cells were incubated overnight with chitosan-coated superparamagnetic iron oxide (CSPIO) and then 5 × 106 cells in the 100 µL hydrogel solution were injected subcutaneously into each nude mouse. Grafts were removed and examined the vascularization, cell growth and proliferation with anti-CD31, SMA, insulin and ki67 antibodies, respectively, at 8, 14, 21, 29 and 36 days after transplantation. All grafts were well-vascularized with prominent CD31 and SMA staining at all time points. Interestingly, insulin-positive cells and iron-positive cells were scattered in the graft at 8 and 14 days; while clusters of insulin-positive cells without iron-positive cells appeared in the grafts at 21 days and persisted thereafter, indicating neogrowth of MIN6 cells. Moreover, proliferating MIN6 cells with strong ki67 staining was observed in 21-, 29- and 36-day grafts. Our results indicate that the originally transplanted MIN6 cells proliferated from 21 days that presented distinctive bioluminescence and MR images.

2.
Pharmaceutics ; 15(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36839830

RESUMO

Vascularized composite allotransplantation is an emerging strategy for the reconstruction of unique defects such as amputated limbs that cannot be repaired with autologous tissues. In order to ensure the function of transplanted limbs, the functional recovery of the anastomosed peripheral nerves must be confirmed. The immunosuppressive drug, tacrolimus, has been reported to promote nerve recovery in animal models. However, its repeated dosing comes with risks of systemic malignancies and opportunistic infections. Therefore, drug delivery approaches for locally sustained release can be designed to overcome this issue and reduce systemic complications. We developed a mixed thermosensitive hydrogel (poloxamer (PLX)-poly(l-alanine-lysine with Pluronic F-127) for the time-dependent sustained release of tacrolimus in our previous study. In this study, we demonstrated that the hydrogel drug degraded in a sustained manner and locally released tacrolimus in mice over one month without affecting the systemic immunity. The hydrogel drug significantly improved the functional recovery of injured sciatic nerves as assessed using five-toe spread and video gait analysis. Neuroregeneration was validated in hydrogel-drug-treated mice using axonal analysis. The hydrogel drug did not cause adverse effects in the mouse model during long-term follow-up. The local injection of encapsulated-tacrolimus mixed thermosensitive hydrogel accelerated peripheral nerve recovery without systemic adverse effects.

3.
Gels ; 8(5)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35621580

RESUMO

The oral route is the most popular way of drug administration because of good patient compliance and ease of use. However, the oral delivery of peptides and proteins is difficult, mainly due to poor oral bioavailability. In past decades, researchers have developed several strategies to improve oral bioavailability by avoiding losing activity in the gastrointestinal (GI) tract and enhancing the intestinal permeability of these drugs. Methoxy poly(ethylene glycol)-poly(l-alanine) (mPEG-PA) is a thermo-sensitive hydrogel exhibiting a sol-to-gel phase transition property. This characteristic is appropriate for encapsulating peptide or protein drugs. To enhance the adhesion ability to intestinal mucus, a thermo-sensitive polymer, mPEG-PA, modified with charged amino acid lysine was developed. This positively charged material would help to bind the negatively charged mucin in mucus. The synthesis was conducted by individually synthesizing mPEG-PA and poly(l-lysine) (PLL) of different lengths via ring-opening polymerization. Then, mPEG-PA and PLL were combined using an NHS ester reaction to synthesize the triblock copolymer (mPEG-PA-PLL). Biocompatibility and the release of calcitonin from the synthesized hydrogel particles under different pH were examined. The initial data showed that the newly design material had a promising potential for the oral delivery of peptide drugs.

4.
Pharmaceutics ; 14(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35057064

RESUMO

Sobrerol, an oral mucolytic agent, in a recent study showed promise for treating multiple sclerosis. A human equivalent dose of 486 mg of sobrerol administered thrice daily (i.e., 1459 mg of daily dose) demonstrated the highest therapeutic efficacy for repurposing use, which also points out the poor compliance of administration. In this study, oral sustained-release pellets of sobrerol were successfully developed with evaluated manufacturing conditions and drug release kinetics. For design of the target drug product, we used a modeling and simulation approach to establish a predictive model of oral pharmacokinetic profile, by exploring the characteristics and correlations corresponding to the pharmacokinetics and pharmacodynamics of sobrerol, such as absorption lag time (0.18 h), time-scaling in vitro-in vivo correlation (tin-vitro = 0.494 tin-vivo - 0.0904), gastrointestinal transit time (8 h), minimum effective concentration (1.61 µg/mL), and duration of action (12.8 h). Results showed that the frequency of administration and the daily dose remarkably reduced by 33.3% (i.e., from thrice to twice daily) and 22.8%, respectively, which indicates that this prototype approach can be adopted for rapidly developing a modified-release dosage form of sobrerol, with improvement of compliance of administration and therapeutic efficacy.

5.
Gels ; 7(4)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34842721

RESUMO

Tacrolimus (FK506) is a common immunosuppressive drug that is capable of suppressing acute rejection reactions, and is used to treat patients after allotransplantation. A stable and suitable serum concentration of tacrolimus is desirable for better therapeutic effects. However, daily drug administration via oral or injection routes is quite inconvenient and may encounter drug overdose or low patient compliance problems. In this research, our objective was to develop an extended delivery system using a thermosensitive hydrogel of poly ethylene glycol, D,L-lactide (L), and ϵ-caprolactone (CL) block copolymer, mPEG-PLCL, as a drug depot. The formulation of mPEG-PLCL and 0.5% PVP-dissolved tacrolimus was studied and the optimal formulation was obtained. The in vivo data showed that in situ gelling is achieved, a stable and sustained release of the drug within 30 days can be maintained, and the hydrogel was majorly degraded in that period. Moreover, improved allograft survival was achieved. Together, these data imply the potential of the current formulation for immunosuppressive treatments.

6.
J Biomed Mater Res A ; 109(12): 2516-2526, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34190399

RESUMO

We developed an injectable hydrogel system with a sustained release of TGF-ß3 through growth factor-loaded microsphere to mimic the cartilage-like microenvironment. Poly(lactic-co-glycolic acid) (PLGA) microspheres incorporated in three dimensional (3D) scaffolds were chosen because of its regulatory approval, good biodegradability, and acting as carriers with sustained release behavior. We evaluated sustained release of TGF-ß3 by PLGA microspheres encapsulated in methoxy poly(ethylene glycol)-poly(alanine) (mPA) hydrogels and the resulting enhanced chondrogenic effects. We reported here the effect of the proposed system for sustained release of growth factors on chondrogenesis in cartilage regeneration. PLGA microspheres were used in our thermosensitive mPA hydrogel system with bovine serum albumin as a stabilizing and protecting agent for the emulsion and TGF-ß3 enabling sustained release. Gelation, structural properties, and in-vitro release of this composite, that is, microspheres in hydrogel, system were investigated. Using PLGA microspheres to carry growth factors could complement the mPA hydrogel's ability to provide an excellent 3D microenvironment for the promotion of chondrogenic phenotype as compared the systems using mPA hydrogel or microspheres alone. Our study demonstrated that this synthesized composite hydrogel system is capable of modulating the biosynthetic and differentiation activities of chondrocytes. The sustained release of TGF-ß3 in this novel hydrogel system could improve biomedical applicability of mPEG-polypeptide scaffolds. The distinctive local growth factor delivery system successfully combined the use of both polymers to be a suitable candidate for prolonged articular cartilage regeneration.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Preparações de Ação Retardada , Emulsões , Hidrogéis , Microesferas , Poliésteres , Polietilenoglicóis , Ratos , Ratos Sprague-Dawley , Soroalbumina Bovina , Alicerces Teciduais
7.
Polymers (Basel) ; 13(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805723

RESUMO

Recently, we demonstrated the feasibility of subcutaneous transplantation of MIN6 cells embedded in a scaffold with poly(ethylene glycol) methyl ether (mPEG)-poly(Ala) hydrogels. In this study, we further tracked these grafts using magnetic resonance (MR) and bioluminescence imaging. After being incubated overnight with chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles and then mixed with mPEG-poly(Ala) hydrogels, MIN6 cells appeared as dark spots on MR scans. For in vivo experiments, we transfected MIN6 cells with luciferase and/or incubated them overnight with CSPIO overnight; 5 × 106 MIN6 cells embedded in mPEG-poly(Ala) hydrogels were transplanted into the subcutaneous space of each nude mouse. The graft of CSPIO-labeled MIN6 cells was visualized as a distinct hypointense area on MR images located at the implantation site before day 21. However, this area became hyperintense on MR scans for up to 64 days. In addition, positive bioluminescence images were also observed for up to 64 days after transplantation. The histology of removed grafts showed positive insulin and iron staining. These results indicate mPEG-poly(Ala) is a suitable scaffold for ß-cell encapsulation and transplantation. Moreover, MR and bioluminescence imaging are useful noninvasive tools for detecting and monitoring mPEG-poly(Ala) hydrogel-embedded MIN6 cells at a subcutaneous site.

8.
Appl Biochem Biotechnol ; 191(1): 45-58, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31940119

RESUMO

To reduce phenolic pollutants in the environment, many countries have imposed firm restrictions on industrial wastewater discharge. In addition, the current industrial process of phenolic resin production uses phenol and formaldehyde as the reactants to perform a polycondensation reaction. Due to the toxicity of formaldehyde and phenolic pollutants, the main purpose of this research was to design a green process using horseradish peroxidase (HRP) enzymatic polymerization to remove phenols and to produce formaldehyde-free phenolic polymers. In this study, the optimal reaction conditions, such as reaction temperature, pH, initial phenol concentration and initial ratio of phenol, and H2O2, were examined. Then, the parameters of the enzyme kinetics were determined. To solve the restriction of enzyme inactivation, several nonionic surfactants were selected to improve the phenol removal efficiency, and the optimal operation conditions in a surfactant-containing system were also confirmed. Importantly, the molecular weight of the synthetic phenolic polymers could be controlled by adjusting the ratio of phenol and H2O2. The content of biphenols in the products was almost undetectable. Collectively, a green chemistry process was proposed in this study and would benefit the treatment of phenol-containing wastewater and the production of formaldehyde-free phenolic resin in the future.


Assuntos
Formaldeído/química , Fenol/química , Fenóis/química , Polímeros/química , Tensoativos/química , Poluentes Químicos da Água/química , Peroxidase do Rábano Silvestre/química , Peróxido de Hidrogênio
9.
Cartilage ; 11(4): 490-499, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-30160166

RESUMO

OBJECTIVE: Quercetin (Que), a bioflavonoid, is both anti-inflammatory and antioxidative. Que has been used as an oral supplement for osteoarthritis (OA) with inconsistent findings because of its low bioavailability. We encapsulated Que in a mPEG-polypeptide thermogel to prolong its bioactivity. The efficacy of this formulation was evaluated in a posttraumatic OA rat model. DESIGN: Methoxy-poly(ethylene glycol)-l-poly(alanine) (mPEG-PA) polymer was synthesized and characterized in terms of cytotoxicity and release kinetics in vitro. At 12 weeks old, Sprague-Dawley rats underwent anterior cruciate ligament transection (ACLT). At 24 weeks post-operation, rats received either an intra-articular (IA) injection of saline, hydrogel, or hydrogel with Que (50 or 500 µg). Gait analysis was performed at pre-ACLT, pre-treatment, and at 4, 8, and 12 weeks post-treatment. At 12 weeks post-treatment, knee joints were collected for histopathological evaluation. RESULTS: In vitro studies showed that chondrocytes were viable after 72 hours of incubation with mPEG-PA, and the release of Que could be sustained for >28 days. Among all OA rats, the limb idleness index (LII) were significantly increased at 24 weeks post-ACLT. Rats that received hydrogel with Que (50 µg) showed the most reduction in LII at both 4 and 8 weeks post-treatment. The Osteoarthritis Research Society International score of rats received hydrogel with Que (50 µg) was significantly lower than the control group. All rats suffered from low-grade synovitis (Krenn score: 2-4). CONCLUSION: This study suggests that a sustained delivery of Que (50 µg) could provide symptom relief and also delay the progression of OA in the knee.


Assuntos
Antioxidantes/administração & dosagem , Cartilagem Articular/efeitos dos fármacos , Hidrogéis/administração & dosagem , Osteoartrite do Joelho/tratamento farmacológico , Quercetina/administração & dosagem , Animais , Lesões do Ligamento Cruzado Anterior/tratamento farmacológico , Condrócitos/efeitos dos fármacos , Modelos Animais de Doenças , Injeções Intra-Articulares , Articulação do Joelho/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
10.
Pharmaceutics ; 11(8)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416239

RESUMO

Tacrolimus is an immunosuppressive agent for acute rejection after allotransplantation. However, the low aqueous solubility of tacrolimus poses difficulties in formulating an injection dosage. Polypeptide thermosensitive hydrogels can maintain a sustained release depot to deliver tacrolimus. The copolymers, which consist of poloxamer and poly(l-alanine) with l-lysine segments at both ends (P-Lys-Ala-PLX), are able to carry tacrolimus in an in situ gelled form with acceptable biocompatibility, biodegradability, and low gelling concentrations from 3 to 7 wt %. By adding Pluronic F-127 to formulate a mixed hydrogel system, the drug release rate can be adjusted to maintain suitable drug levels in animals with transplants. Under this formulation, the in vitro release of tacrolimus was stable for more than 100 days, while in vivo release of tacrolimus in mouse model showed that rejection from skin allotransplantation was prevented for at least three weeks with one single administration. Using these mixed hydrogel systems for sustaining delivery of tacrolimus demonstrates advancement in immunosuppressive therapy.

11.
R Soc Open Sci ; 6(5): 182060, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31218032

RESUMO

Poly(methyl methacrylate) (PMMA) is the most frequently used bone void filler in orthopedic surgery. However, the interface between the PMMA-based cement and adjacent bone tissue is typically weak as PMMA bone cement is inherently bioinert and not ideal for bone ingrowth. The present study aims to improve the affinity between the polymer and ceramic interphases. By surface modifying nano-sized hydroxyapatite (nHAP) with ethylene glycol and poly(ɛ-caprolactone) (PCL) sequentially via a two-step ring opening reaction, affinity was improved between the polymer and ceramic interphases of PCL-grafted ethylene glycol-HAP (gHAP) in PMMA. Due to better affinity, the compressive strength of gHAP/PMMA was significantly enhanced compared with nHAP/PMMA. Furthermore, PMMA with 20 wt.% gHAP promoted pre-osteoblast cell proliferation in vitro and showed the best osteogenic activity between the composites tested in vivo. Taken together, gHAP/PMMA not only improves the interfacial adhesion between the nanoparticles and cement, but also increases the biological activity and affinity between the osteoblast cells and PMMA composite cement. These results show that gHAP and its use in polymer/bioceramic composite has great potential to improve the functionality of PMMA cement.

12.
PLoS One ; 14(1): e0210285, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629660

RESUMO

The general concept of tissue engineering is to restore biological function by replacing defective tissues with implantable, biocompatible, and easily handleable cell-laden scaffolds. In this study, osteoinductive and osteoconductive super paramagnetic Fe3O4 nanoparticles (MNP) and hydroxyapatite (HAP) nanoparticles were incorporated into a di-block copolymer based thermo-responsive hydrogel, methoxy(polyethylene glycol)-polyalanine (mPA), at various concentrations to afford composite, injectable hydrogels. Incorporating nanoparticles into the thermo-responsive hydrogel increased the complex viscosity and decreased the gelation temperature of the starting hydrogel. Functionally, the integration of inorganic nanoparticles modulated bio-markers of bone differentiation and enhanced bone mineralization. Moreover, this study adopted the emerging method of using either a supplementary static magnetic field (SMF) or a moving magnetic field to elicit biological response. These results demonstrate that combining external (magnet) and internal (scaffold) magnetisms is a promising approach for bone regeneration.


Assuntos
Regeneração Óssea , Hidrogéis , Engenharia Tecidual/métodos , Osso e Ossos , Técnicas de Cultura de Células , Proliferação de Células , Durapatita , Perfilação da Expressão Gênica , Hidrogel de Polietilenoglicol-Dimetacrilato , Magnetismo , Teste de Materiais , Nanopartículas , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese , Peptídeos/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais
13.
Biomed Res Int ; 2018: 2710892, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30662902

RESUMO

Thermosensitive hydrogels are attractive alternative scaffolding materials for minimally invasive surgery through a simple injection and in situ gelling. In this study, a novel poly(ester-amide) polymer, methoxy poly(ethylene glycol)-poly(pyrrolidone-co-lactide) (mPDLA, P3L7) diblock copolymer, was synthesized and characterized for cartilage tissue engineering. A series of amphiphilic diblock copolymers was synthesized by ring-opening polymerization of mPEG 550, D,L-lactide, and 2-pyrrolidone. By dynamic light scattering analysis and tube-flipped-upside-down method, viscoelastic properties of the mPDLA diblock copolymer solution exhibited sol-gel transition behavior as a function of temperature. An in vitro degradation assay showed that degradation acidity was effectively reduced by introducing the 2-pyrrolidone monomer into the polyester hydrogel. Besides, mPDLA exhibited great biocompatibility in vitro for cell encapsulation due to a high swelling ratio. Moreover, cell viability and biochemical analysis proved that the mPDLA hydrogel presented a great chondrogenic response. Taken together, these results demonstrate that mPDLA hydrogels are promising injectable scaffolds potentially applicable to cartilage tissue engineering.


Assuntos
Plásticos Biodegradáveis/química , Cartilagem/química , Hidrogéis/química , Poliaminas/química , Poliésteres/química , Polímeros/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dioxanos/química , Polietilenoglicóis/química , Coelhos , Temperatura , Engenharia Tecidual/métodos
14.
Colloids Surf B Biointerfaces ; 161: 51-58, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040834

RESUMO

Cyclodextrins (CDs) coupled with oils forms an insoluble inclusion complex that is able to adsorb to the interface between oils and aqueous phases; it thereby stabilizes Pickering emulsions. Three types of oils (triglyceride, linear chain oil, and ring-structured oil) were chosen to work with CDs to prepare bupivacaine (BPC)-encapsulated Pickering emulsions. We also investigated the relationship between oils and CDs; as well as their influences on stability, drug-releasing capability and skin permeability. Particle sizes and microstructures were determined by dynamic light scattering and scanning electron microscopy, respectively. In vitro drug release studies and in vitro skin permeation studies were evaluated by using Franz diffusion model. Particle sizes of all Pickering emulsions were larger than 1µm, and the morphology was spherical and covered with rough surfaces. BPC was released over an extended period, and the releasing ratios from Pickering emulsions were only 12.2%-23.1% after 48h. In skin permeation studies, compared with other formulations, a formula involved with ring-structured oil allowed the highest permeation amount through skin. However, after 24h of exposure, formulation operated with linear chain oil showed the highest skin-retaining amount. These results suggest that Pickering emulsions could regulate the target site of skin depending on various types of oil used.


Assuntos
Bupivacaína/farmacocinética , Ciclodextrinas/química , Emulsões/química , Óleos/química , Administração Cutânea , Anestésicos Locais/administração & dosagem , Animais , Bupivacaína/administração & dosagem , Bupivacaína/química , Liberação Controlada de Fármacos , Tamanho da Partícula , Permeabilidade , Coelhos , Pele/metabolismo , Absorção Cutânea , Suínos
15.
Bioresour Technol ; 245(Pt B): 1455-1460, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28596072

RESUMO

The aim of this work was to study the feasibility of surface displaying synthetic phytochelatin (EC) on Saccharomyces cerevisiae to overcome the inhibitory effect of heavy metals on ethanol production. Via the fusion of a gene encoding EC to an α-agglutinin gene, the engineered S. cerevisiae was able to successfully display EC on its surface. This surface engineered yeast strain exhibited an efficient cadmium adsorption capability and a remarkably enhanced cadmium tolerance. Moreover, its ethanol production efficiency was significantly improved as compared to a control strain in the presence of cadmium. Similar results could also be observed in the presence of other metals, such as nickel, lead and copper. Overall, this method allows simultaneous biorefinery and heavy metal removal when using heavy metal-contaminated biomass as raw materials.


Assuntos
Metais Pesados , Fitoquelatinas , Saccharomyces cerevisiae , Biodegradação Ambiental , Biomassa , Cádmio , Etanol
16.
Mater Sci Eng C Mater Biol Appl ; 76: 181-189, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482515

RESUMO

Hydrogels are considered to be attractive cell-matrix for chondrocytes due to their similarity in properties to the natural cartilage. However, the formation of chondrocyte cell clusters in hydrogels has been mostly limited to naturally-derived or relatively fast degrading materials. In this study, a series of diblock copolymer poly(ethylene glycol)-poly(alanine) (mPEG-PA) was synthesized and investigated as injectable biomimic hydrogels for the culturing of chondrocytes. Depending on the poly(alanine) chain length, afforded hydrogels exhibited variable mechanical property and microarchitecture due to difference in secondary structure arrangement. After 21days of culture, cell clusters were observed in all hydrogels with longer PA chains and these hydrogels supported more homogenous and established clustering as well as significantly higher glycosaminoglycan and collagen deposition. Interestingly, scanning electron microscopy revealed a distinct micron range fibrillar-like microarchitecture that may be responsible for maintaining chondrocyte phenotype and matrix production. In addition, micrographs revealed the presence of collagen fibrils and an extensive extracellular matrix network. Therefore, it is reasonable to conclude that mPEG-PA hydrogels possess the desirable properties for chondrocyte cluster formation and serve as potential candidate in cartilage tissue engineering.


Assuntos
Condrócitos , Células Cultivadas , Hidrogéis , Peptídeos , Polietilenoglicóis , Engenharia Tecidual
17.
J Biosci Bioeng ; 124(2): 184-188, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28325660

RESUMO

The aim of this study was to use a modified bioreactor system for simultaneous saccharification of cellulose and bioethanol production. We tested Aspergillus niger and Trichoderma reesei for cellulose saccharification and Zymomonas mobilis for bioethanol production simultaneously in this modified bioreactor. The results showed that various carboxymethylcellulose (CMC) concentrations (10, 15, or 20 g/L) as a substrate for A. niger and T. reesei yielded bioethanol production of 0.51, 0.78, and 0.89 g/L and a CMC conversion rate of 10.2%, 10.7%, and 8.89%, respectively. These data suggested that at 10 g/L CMC as a substrate, the CMC conversion rate was higher than that at the other concentrations. When CMC concentration exceeded 15 g/L, bioethanol production was prolonged to 40 h. These results were attributed to the viscosity of CMC. This study also tested Napier grass (an agricultural byproduct) for bioethanol production. The results revealed bioethanol production and the theoretical Napier grass conversion rate were 0.38 g/L and 12.6%, respectively, for 13-h cultivation when the feeding concentration of Napier grass was 10 g/L. When Napier grass concentration was increased to 15 g/L, bioethanol production and the Napier grass conversion rate reached 0.51 g/L and 23%, respectively, after 14-h cultivation. Eventually, the experimental results indicated using agricultural waste for bioethanol production has been become a potential strategy.


Assuntos
Aspergillus niger/metabolismo , Etanol/metabolismo , Pennisetum/microbiologia , Trichoderma/metabolismo , Zymomonas/metabolismo , Reatores Biológicos/microbiologia , Celulose/metabolismo , Etanol/análise , Fermentação , Hidrólise , Pennisetum/química , Pennisetum/metabolismo
18.
J Appl Biomater Funct Mater ; 15(2): e162-e169, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27716871

RESUMO

BACKGROUND: The aim of this study was to develop a minimally invasive hydrogel system that can release strontium ions, an element that has been shown to increase osteoblast proliferation and prohibit bone resorption, in a controlled manner. METHODS: SrCO3 was selected as the salt of choice due to potential acid neutralization reaction between SrCO3 and degradation by-products of methoxy(polyethylene glycol)-co-poly(lactic-co-glycolic acid) (mPEG-PLGA): namely, lactic acid and glycolic acid. SrCO3 was incorporated into mPEG-PLGA hydrogel, and the system was assessed for gelation properties, drug release and biocompatibility. RESULTS: SrCO3 incorporation at hydrogel to SrCO3 ratios of 5:1, 3:1 and 1:1 (wt%) did not compromise the thermosensitivity of mPEG-PLGA hydrogels. Furthermore, incorporation of SrCO3 at 1:1 ratio prevented copolymer self-catalysis and decreased hydrogel weight loss from 85% to 61% in vitro after 30 days. During the 30-day time frame, zero-order strontium release was observed and was correlated to hydrogel degradation and acidity. The addition of SrCO3 also improved in vivo hydrogel biocompatibility, due to moderation of acidic microenvironment and amelioration of inflammatory response. CONCLUSIONS: These results showed that the described system is suitable for the extended release of strontium and exhibits potential for localized treatment for osteoporosis or as a bone void filler.


Assuntos
Preparações de Ação Retardada/química , Hidrogéis/química , Estrôncio/química , Ácido Láctico , Poliésteres , Polietilenoglicóis
19.
J Tissue Eng Regen Med ; 11(3): 669-678, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-25431317

RESUMO

In this study, a series of photocrosslinked hydrogels were designed composed of both poly(lactide)-poly(ethylene glycol)-poly(lactide) (PEL) and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PEC) macromers. The PEL/PEC hydrogels at ratios of 100:0, 75:25, 50;50, 25:75 and 0:100 were studied for their degradation characteristics and their ability to support chondrogenesis of encapsulated chondrocytes. Difference in hydrolytic susceptibility between copolymers led to different degradation patterns where higher PEC content correlated with slower degradation. Increased chondrogenic gene expression was observed in chondrocyte-laden hydrogels within a 4-week culture period. Biochemical and histological evaluations revealed significant accumulation of extracellular matrix proteins such as glycosaminoglycans and collagen in the 50/50 hydrogel owing to appropriate tuning of hydrogel degradation. These results demonstrate that the dual-component photocrosslinked hydrogel system is suitable for use as scaffold to support chondrogenesis and, moreover, the tunability of these systems opens up possibilities for use in different cell culturing applications. Copyright © 2014 John Wiley & Sons, Ltd.


Assuntos
Condrócitos/citologia , Reagentes de Ligações Cruzadas/química , Matriz Extracelular/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Luz , Poliésteres/química , Polietilenoglicóis/química , Animais , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica , Glicosaminoglicanos/metabolismo , Hidrólise , Imuno-Histoquímica , Poliésteres/síntese química , Polietilenoglicóis/síntese química , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...