Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902124

RESUMO

Acrylamide (AA) is a food processing contaminant commonly found in fried and baked food products. In this study, the potential synergistic effect of probiotic formulas in reducing AA was studied. Five selected probiotic strains (Lactiplantibacillus plantarum subsp. plantarum ATCC14917 (L. Pl.), Lactobacillus delbrueckii subsp. bulgaricus ATCC11842 (L. B.), Lacticaseibacillus paracasei subsp. paracasei ATCC25302 (L. Pa), Streptococcus thermophilus ATCC19258, and Bifidobacterium longum subsp. longum ATCC15707) were selected for investigating their AA reducing capacity. It was found that L. Pl. (108 CFU/mL) showed the highest AA reduction percentage (43-51%) when exposed to different concentrations of AA standard chemical solutions (350, 750, and 1250 ng/mL). The potential synergistic effect of probiotic formulas was also examined. The result demonstrated a synergistic AA reduction effect by the probiotic formula: L. Pl. + L. B., which also showed the highest AA reduction ability among the tested formulas. A further study was conducted by incubating selected probiotic formulas with potato chips and biscuit samples followed by an in vitro digestion model. The findings demonstrated a similar trend in AA reduction ability as those found in the chemical solution. This study firstly indicated the synergistic effect of probiotic formulas on AA reduction and its effect was also highly strain-dependent.


Assuntos
Lactobacillus delbrueckii , Probióticos , Acrilamida , Lactobacillus
3.
Mass Spectrom Rev ; : e21817, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36218279
4.
Foods ; 11(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563986

RESUMO

In this study, probiotic bacteria as a new post-processing approach to reduce acrylamide (AA) was investigated. The AA reduction ability of selected Lactobacillus strains and Bifidobacterium strains was demonstrated in (a) AA chemical solutions; (b) food matrices (biscuits and chips) and (c) in vitro digestion. The findings showed tested bacteria exhibited AA reduction ability which was probiotic strain-, AA concentration-, probiotic concentration-, incubation time- and pH-dependent. L. acidophilus LA 45 and B. longum ATCC 15707 (109 CFU/mL) showed the highest AA reduction (86.85 and 88.85%, respectively) when exposed to 350 ng/mL AA solution for 8 h. The findings also demonstrated that AA reduction ability of selected probiotic strains was pH- and food matrix-dependent in both food matrices (9.45-22.15%) and in vitro digestion model (10.91-21.29%). This study showed probiotic bacteria can lower AA bioaccessibility under simulated digestion.

6.
Phys Chem Chem Phys ; 22(37): 21393-21402, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32940309

RESUMO

Long-range electron transfer in proteins can be rationalized as a sequential short-distance electron-hopping processes via amino acid residues having low ionization energy as relay stations. Tyrosine residues can serve as such redox-active intermediates through one-electron oxidation to form a π-radical cation at its phenol side chain. An electron transfer from a vicinal functional group to this π-electron hole completes an elementary step of charge migration. However, transient oxidized/reduced intermediates formed at those relay stations during electron transfer processes have not been observed. In this study, formation of analog reactive intermediates via electron donor-acceptor coupling is observed by using IRMPD action spectroscopy. An elementary charge migration at the molecular level in model tyrosine-containing peptide radical cations [M]˙+ in the gas phase is revealed with its unusual Cα-Cß bond cleavage at the side chain of the N-terminal residue. This reaction is induced by the radical character of the N-terminal amino group (-NH2˙+) resulting from an n → π+ interaction between the nonbonding electron pair of NH2 (n) and the π-electron hole at the Tyr side chain (π+). The formation of -NH2˙+ is supported by the IRMPD spectrum showing a characteristic NH2 scissor vibration coupled with Tyr side-chain stretches at 1577 cm-1. This n → π+ interaction facilitates a dissociative electron transfer with NH2 as the relay station. The occurrence of this side-chain cleavage may be an indicator of the formation of reactive conformers featuring the n → π+ interaction.


Assuntos
Elétrons , Radicais Livres/química , Peptídeos/química , Tirosina/química , Oxirredução , Conformação Proteica
7.
J Mass Spectrom ; 56(4): e4630, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32812311

RESUMO

In this study, dissociative one-electron transfer dissociation of [CuII (dien)Y(G/A)W]•2+ [dien = diethylenetriamine; Y(G/A)W = tyrosyl (glycyl/alanyl)tryptophan] was used to generate the tripeptide radical cations [Y(G/A)W]•+ ; subsequent loss of the Tyr side chain formed [Gα • (G/A)W]+ . The π-centered species [YGWπ • ]+ generated the α-centered species [Gα • GW]+ through Cα -Cß bond cleavage, as revealed using infrared multiple photon dissociation (IRMPD) measurements and density functional theory (DFT) calculations. Comparisons of experimental and theoretical IR spectra confirmed that both the charge and spin densities of [Y(G/A)Wπ • ]+ were delocalized initially at the tryptophan indolyl ring; subsequent formation of the final [Gα • (G/A)W]+ structure gave the highest spin density at the α-carbon atom of the N-terminal glycine residue, with a proton solvated by the first amide oxygen atom. The IRMPD mass spectra and action spectra of the [Gα • (G/A)W]+ species were all distinctly different from those of their isomeric [G(G/A)Wπ • ]+ species. The mechanism of formation of the captodative [Gα • (G/A)W]+ species-with the charge site separated from the radical site-from [Y(G/A)Wπ • ]+ has been elucidated. DFT calculations suggested that the Cα -Cß bond cleavage of the tyrosine residue in the radical cationic [Y(G/A)Wπ • ]+ precursor involves (a) through-space electron transfer between the indolyl and phenolic groups; (b) formation of proton-bound dimers through Cα -Cß cleavage of the tyrosine residue; and (c) a concerted proton rearrangement from the phenolic OH group to the carboxyl group and formation of the α-carbon-centered product [Gα • (G/A)W]+ through hydrogen bond cleavage. The barriers for the electron transfer (a), the Cα -Cß cleavage (b), and the protonation rearrangement (c) were 12.8, 26.5, and 10.3 kcal mol-1 , respectively.

8.
J Mass Spectrom ; 56(4): e4591, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32633895

RESUMO

Multidimensional liquid chromatography is the mainstay separation technique used for shotgun proteomic analyses. The application of a multiple-fraction concatenation (MFC) strategy can result in a more disperse and consistent peptide elution profile across different fractions, when compared with a conventional strategy. Herein, we present the first automated online RP-RP platform implementing an MFC strategy to facilitate robust, unattended, routine proteomic analyses. The improved duty cycle utilization of the MFC strategy led to an increase of 9% in the separation space occupancy and increases of approximately 10% in the identification of both proteins and peptides. The peptides uniquely identified by the MFC strategy were significantly biased toward those of acidic nature, with increased precursor signals leading to improved MS/MS spectral quality and enhanced acidic peptide identification. These improvements in qualitative analysis using the MFC strategy were also extended to quantitative analysis. When the acquired proteome was quantified with a normalized spectral abundance factor, the additionally acquired acidic peptides were a critical factor leading to enhanced reproducibility of quantitation using the MFC strategy. With merits of superior qualitative and quantitative characteristics over the conventional strategy, the MFC strategy appears to be a highly amenable technique for enhancing the separation capacity for routine proteomic analyses.

9.
Anal Chem ; 92(15): 10768-10776, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32628467

RESUMO

We present herein rPTMDetermine, an adaptive and fully automated methodology for validation of the identification of rarely occurring post-translational modifications (PTMs), using a semisupervised approach with a linear discriminant analysis (LDA) algorithm. With this strategy, verification is enhanced through similarity scoring of tandem mass spectrometry (MS/MS) comparisons between modified peptides and their unmodified analogues. We applied rPTMDetermine to (1) perform fully automated validation steps for modified peptides identified from an in silico database and (2) retrieve potential yet-to-be-identified modified peptides from raw data (that had been missed through conventional database searches). In part (1), 99 of 125 3-nitrotyrosyl-containing (nitrated) peptides obtained from a ProteinPilot search were validated and localized. Twenty nitrated peptides were falsely assigned because of incorrect monoisotopic peak assignments, leading to erroneous identification of deamidation and nitration. Five additional nitrated peptides were, however, validated after performing nonmonoisotopic peak correction. In part (2), an additional 236 unique nitrated peptides were retrieved and localized, containing 113 previously unreported nitration sites; 25 endogenous nitrated peptides with novel sites were selected and verified by comparison with synthetic analogues. In summary, we identified and confidently validated 296 unique nitrated peptides-collectively representing the largest number of endogenously identified 3-nitrotyrosyl-containing peptides from the cerebral cortex proteome of a Macaca fascicularis model of stroke. Furthermore, we harnessed the rPTMDetermine strategy to complement conventional database searching and enhance the confidence of assigning rarely occurring PTMs, while recovering many missed peptides. In a final demonstration, we successfully extended the application of rPTMDetermine to peptides featuring tryptophan oxidation.


Assuntos
Nitratos/metabolismo , Processamento de Proteína Pós-Traducional , Aprendizado de Máquina Supervisionado , Tirosina/metabolismo , Sequência de Aminoácidos , Automação , Análise Discriminante , Peptídeos/química , Peptídeos/metabolismo
10.
Phys Chem Chem Phys ; 22(23): 13084-13091, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32490449

RESUMO

We report herein the first detailed study of the mechanism of redox reactions occurring during the gas-phase dissociative electron transfer of prototypical ternary [CuII(dien)M]˙2+ complexes (M, peptide). The two final products are (i) the oxidized non-zwitterionic π-centered [M]˙+ species with both the charge and spin densities delocalized over the indole ring of the tryptophan residue and with a C-terminal COOH group intact, and (ii) the complementary ion [CuI(dien)]+. Infrared multiple photon dissociation (IRMPD) action spectroscopy and low-energy collision-induced dissociation (CID) experiments, in conjunction with density functional theory (DFT) calculations, revealed the structural details of the mass-isolated precursor and product cations. Our experimental and theoretical results indicate that the doubly positively charged precursor [CuII(dien)M]˙2+ features electrostatic coordination through the anionic carboxylate end of the zwitterionic M moiety. An additional interaction exists between the indole ring of the tryptophan residue and one of the primary amino groups of the dien ligand; the DFT calculations provided the structures of the precursor ion, intermediates, and products, and enabled us to keep track of the locations of the charge and unpaired electron. The dissociative one-electron transfer reaction is initiated by a gradual transition of the M tripeptide from the zwitterionic form in [CuII(dien)M]˙2+ to the non-zwitterionic M intermediate, through a cascade of conformational changes and proton transfers. In the next step, the highest energy intermediate is formed; here, the copper center is 5-coordinate with coordination from both the carboxylic acid group and the indole ring. A subsequent switch back to 4-coordination to an intermediate IM1, where attachment to GGW occurs through the indole ring only, creates the structure that ultimately undergoes dissociation.


Assuntos
Complexos de Coordenação/química , Cobre/química , Peptídeos/química , Triptofano/química , Teoria da Densidade Funcional , Transporte de Elétrons , Estrutura Molecular , Fótons , Espectrofotometria Infravermelho , Triptofano/análogos & derivados
11.
Chemistry ; 26(1): 331-335, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31657861

RESUMO

The elementary mechanism of radical-mediated peptide tyrosine nitration, which is a hallmark of post-translational modification of proteins under nitrative stress in vivo, has been elucidated in detail by using an integrated approach that combines the gas-phase synthesis of prototypical molecular tyrosine-containing peptide radical cations, ion-molecule reactions, and isotopic labeling experiments with DFT calculations. This reaction first involves the radical recombination of . NO2 towards the prerequisite phenoxyl radical tautomer of a tyrosine residue, followed by proton rearrangements, finally yielding the stable and regioselective 3-nitrotyrosyl residue product. In contrast, nitration with the π-phenolic radical cation tautomer is inefficient. This first direct experimental evidence for the elementary steps of the radical-mediated tyrosine nitration mechanism in the gas phase provides a fundamental insight into the regioselectivity of biological tyrosine ortho-nitration.

12.
Phys Chem Chem Phys ; 20(27): 18688-18698, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29956702

RESUMO

Collision-induced dissociation of isotopically labelled protonated pentaglycine produced two abundant [b5]+ ions, the products of the loss of water from the first and second amide groups, labelled [b5]+I and [b5]+II. IRMPD spectroscopy and DFT calculations show that these two [b5]+ ions feature N1-protonated 3,5-dihydro-4H-imidazol-4-one structures. 15N-Labelling established that some interconversion occurs between these two ions but dissociations are preferred. For both ions, DFT calculations show that the barrier to interconversion is slightly higher than those to dissociation. Dehydration of protonated hexaglycine produced three imidazolone ions. Ions [b6]+I and [b6]+II exhibit analogous CID spectra to those from [b5]+I and [b5]+II; however, the spectrum of the [b6]+III ion was dramatically different, showing losses predominantly of a further water molecule or cleavage of the second amide bond to give the glycyloxazolone (a deprotonated [b2]+ ion, labelled GlyGlyox (114 Da)) from the N-terminus. Protonated polyglycines [Glyn + H]+, where n = 7-9, all readily lose at least one water molecule. The corresponding [bn]+ ions lose either a further water molecule, an oxazolone from the N-terminus or a truncated peptide from the C-terminus. The number of amino acid residues in the latter two eliminated neutral molecules provides insight into the location of the imidazolone in the peptide chain and which oxygen was lost in the initial dehydration reaction. From this analysis, it appears that water loss from the longer protonated polyglycines is predominantly from the central residues.

13.
Chem Rec ; 18(1): 20-44, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28650100

RESUMO

Radical-mediated dissociations of peptide radical cations have intriguing unimolecular gas phase chemistry, with cleavages of almost every bond of the peptide backbone and amino acid side chains in a competitive and apparently "stochastic" manner. Challenges of unraveling mechanistic details are related to complex tautomerizations prior to dissociations. Recent conjunctions of experimental and theoretical investigations have revealed the existence of non-interconvertible isobaric tautomers with a variety of radical-site-specific initial structures, generated from dissociative electron transfer of ternary metal-ligand-peptide complexes. Their reactivity is influenced by the tautomerization barriers, perturbing the nature, location, or number of radical and charge site(s), which also determine the energetics and dynamics of the subsequent radical-mediated dissociatons. The competitive radical- and charge-induced dissociations are extremely dependent on charge density. Charge sequesting can reduce the charge densities on the peptide backbone and hence enhance the flexibility of structural rearrangement. Analysing the structures of precursors, intermediates and products has led to the discovery of many novel radical migration prior to peptide backbone and/or side chain fragmentations. Upon these successes, scientists will be able to build peptide cationic analogues/tautomers having a variety of well-defined radical sites.


Assuntos
Peptídeos/química , Cátions/química , Radicais Livres/química
14.
J Biol Chem ; 292(47): 19503-19520, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-28972161

RESUMO

Cytotoxin-producing Klebsiella oxytoca is the causative agent of antibiotic-associated hemorrhagic colitis (AAHC). Recently, the cytotoxin associated with AAHC was identified as tilivalline, a known pentacyclic pyrrolobenzodiazepine (PBD) metabolite produced by K. oxytoca Although this assertion of tilivalline's role in AAHC is supported by evidence from animal experiments, some key aspects of this finding appear to be incompatible with toxicity mechanisms of known PBD toxins. We therefore hypothesized that K. oxytoca may produce some other uncharacterized cytotoxins. To address this question, we investigated whether tilivalline alone is indeed necessary and sufficient to induce cytotoxicity or whether K. oxytoca also produces other cytotoxins. LC-MS- and NMR-based metabolomic analyses revealed the presence of an abundant tricyclic PBD, provisionally designated kleboxymycin, in the supernatant of toxigenic K. oxytoca strains. Moreover, by generating multiple mutants with gene deletions affecting tilivalline biosynthesis, we show that a tryptophanase-deficient, tilivalline-negative K. oxytoca mutant induced cytotoxicity in vitro similar to tilivalline-positive K. oxytoca strains. Furthermore, synthetic kleboxymycin exhibited greater than 9-fold higher cytotoxicity than tilivalline in TC50 cell culture assays. We also found that the biosynthetic pathways for kleboxymycin and tilivalline appear to overlap, as tilivalline is an indole derivative of kleboxymycin. In summary, our results indicate that tilivalline is not essential for inducing cytotoxicity observed in K. oxytoca-associated AAHC and that kleboxymycin is a tilivalline-related bacterial metabolite with even higher cytotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Benzodiazepinonas/farmacologia , Citotoxinas/farmacologia , Enterocolite Pseudomembranosa/patologia , Klebsiella oxytoca/metabolismo , Neoplasias Laríngeas/patologia , Antibacterianos/efeitos adversos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/patologia , Enterocolite Pseudomembranosa/induzido quimicamente , Enterocolite Pseudomembranosa/microbiologia , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella oxytoca/efeitos dos fármacos , Neoplasias Laríngeas/tratamento farmacológico , Neoplasias Laríngeas/microbiologia , Peptídeos/farmacologia , Células Tumorais Cultivadas
15.
Chem Sci ; 8(6): 4626-4633, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28626571

RESUMO

Bismuth drugs, despite being clinically used for decades, surprisingly remain in use and effective for the treatment of Helicobacter pylori infection, even for resistant strains when co-administrated with antibiotics. However, the molecular mechanisms underlying the clinically sustained susceptibility of H. pylori to bismuth drugs remain elusive. Herein, we report that integration of in-house metalloproteomics and quantitative proteomics allows comprehensive uncovering of the bismuth-associated proteomes, including 63 bismuth-binding and 119 bismuth-regulated proteins from Helicobacter pylori, with over 60% being annotated with catalytic functions. Through bioinformatics analysis in combination with bioassays, we demonstrated that bismuth drugs disrupted multiple essential pathways in the pathogen, including ROS defence and pH buffering, by binding and functional perturbation of a number of key enzymes. Moreover, we discovered that HpDnaK may serve as a new target of bismuth drugs to inhibit bacterium-host cell adhesion. The integrative approach we report, herein, provides a novel strategy to unveil the molecular mechanisms of antimicrobial metals against pathogens in general. This study sheds light on the design of new types of antimicrobial agents with multiple targets to tackle the current crisis of antimicrobial resistance.

16.
Phys Chem Chem Phys ; 19(25): 16923-16933, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28631796

RESUMO

Four isomers of the radical cation of tripeptide phenylalanylglycyltryptophan, in which the initial location of the radical center is well defined, have been isolated and their collision-induced dissociation (CID) spectra examined. These ions, the π-centered [FGWπ˙]+, α-carbon- [FGα˙W]+, N-centered [FGWN˙]+ and ζ-carbon- [Fζ˙GW]+ radical cations, were generated via collision-induced dissociation (CID) of transition metal-ligand-peptide complexes, side chain fragmentation of a π-centered radical cation, homolytic cleavage of a labile nitrogen-nitrogen single bond, and laser induced dissociation of an iodinated peptide, respectively. The π-centered and tryptophan N-centered peptide radical cations produced almost identical CID spectra, despite the different locations of their initial radical sites, which indicated that interconversion between the π-centered and tryptophan N-centered radical cations is facile. By contrast, the α-carbon-glycyl radical [FGα˙W]+, and ζ-phenyl radical [Fζ˙GW]+, featured different dissociation product ions, suggesting that the interconversions among α-carbon, π-centered (or tryptophan N-centered) and ζ-carbon-radical cations have higher barriers than those to dissociation. Density functional theory calculations have been used to perform systematic mechanistic investigations on the interconversions between these isomers and to study selected fragmentation pathways for these isomeric peptide radical cations. The results showed that the energy barrier for interconversion between [FGWπ˙]+ and [FGWN˙]+ is only 31.1 kcal mol-1, much lower than the barriers to their dissociation (40.3 kcal mol-1). For the [FGWπ˙]+, [FGα˙W]+, and [Fζ˙GW]+, the barriers to interconversion are higher than those to dissociation, suggesting that interconversions among these isomers are not competitive with dissociations. The [z3 - H]˙+ ions isolated from [FGα˙W]+ and [Fζ˙GW]+ show distinctly different fragmentation patterns, indicating that the structures of these ions are different and this result is supported by the DFT calculations.

17.
J Proteome Res ; 16(3): 1150-1166, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28102082

RESUMO

Stroke is one of the main causes of mortality and long-term disability worldwide. The pathophysiological mechanisms underlying this disease are not well understood, particularly in the chronic phase after the initial ischemic episode. In this study, a Macaca fascicularis stroke model consisting of two sample groups, as determined by MRI-quantified infarct volumes as a measure of the stroke severity 28 days after the ischemic episode, was evaluated using qualitative and quantitative proteomics analyses. By using multiple online multidimensional liquid chromatography platforms, 8790 nonredundant proteins were identified that condensed to 5223 protein groups at 1% global false discovery rate (FDR). After the application of a conservative criterion (5% local FDR), 4906 protein groups were identified from the analysis of cerebral cortex. Of the 2068 quantified proteins, differential proteomic analyses revealed that 31 and 23 were dysregulated in the elevated- and low-infarct-volume groups, respectively. Neurogenesis, synaptogenesis, and inflammation featured prominently as the cellular processes associated with these dysregulated proteins. Protein interaction network analysis revealed that the dysregulated proteins for inflammation and neurogenesis were highly connected, suggesting potential cross-talk between these processes in modulating the cytoskeletal structure and dynamics in the chronic phase poststroke. Elucidating the long-term consequences of brain tissue injuries from a cellular prospective, as well as the molecular mechanisms that are involved, would provide a basis for the development of new potentially neurorestorative therapies.


Assuntos
Córtex Cerebral/química , Regulação da Expressão Gênica , Proteômica/métodos , Acidente Vascular Cerebral/metabolismo , Animais , Doença Crônica , Modelos Animais de Doenças , Inflamação/genética , Macaca fascicularis , Imageamento por Ressonância Magnética , Neurogênese/genética , Mapas de Interação de Proteínas
18.
J Chromatogr A ; 1498: 196-206, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28126228

RESUMO

A fully automated online multidimensional liquid chromatography (MDLC) platform featuring high-/low-pH reversed-phase (RP) dimensions and two other complementary-strong anion exchange (SAX) and strong cation exchange (SCX), respectively-chromatographic separations in tandem, with conventional offline titanium dioxide pre-enrichment, has been applied for the first global phosphopeptide identification from the macaque cerebral cortex in the presence of phosphatase inhibitors. Phosphorylation data interpretation, including site determination, and network construction have been performed: 14,338 distinct phosphopeptides in 7572 non-redundant phosphosites at 1% FDR were identified with 784 novel phosphorylation sites when mapping into the two most-curated public phosphorylation databases, PhosphoSitePlus (PSP) and Phospho.ELM (ELM), using probability-based placements. The net charges of both extremely acidic and basic phosphopeptides depend largely on the pH of the solvent, in turn impacting their retention and subsequent fractionation; the inclusion of the complementary SAX and SCX column chemistries after the high-pH RP dimension allowed effective retention and separation of net-negatively and -positively charged phosphopeptides, thereby leading to extended anionic and cationic phosphopeptide coverage from basophilic and acidophilic kinase substrates. A valuable protein interaction network of known and predicted motifs kinases was constructed from 3064 confident phosphorylation sites in the non-human primate's brain.


Assuntos
Córtex Cerebral/metabolismo , Fosfopeptídeos/análise , Animais , Cromatografia por Troca Iônica , Cromatografia de Fase Reversa , Bases de Dados de Proteínas , Concentração de Íons de Hidrogênio , Macaca fascicularis/metabolismo , Masculino , Espectrometria de Massas , Fosfopeptídeos/isolamento & purificação , Fosforilação , Tripsina/metabolismo
19.
Sci Rep ; 6: 37148, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27841332

RESUMO

TBN, a novel tetramethylpyrazine derivative armed with a powerful free radical-scavenging nitrone moiety, has been reported to reduce cerebral infarction in rats through multi-functional mechanisms of action. Here we study the therapeutic effects of TBN on non-human primate model of stroke. Thirty male Cynomolgus macaques were subjected to stroke with 4 hours ischemia and then reperfusion. TBN were injected intravenously at 3 or 6 hours after the onset of ischemia. Cerebral infarction was examined by magnetic resonance imaging at 1 and 4 weeks post ischemia. Neurological severity scores were evaluated during 4 weeks observation. At the end of experiment, protein markers associated with the stroke injury and TBN treatment were screened by quantitative proteomics. We found that TBN readily penetrated the blood brain barrier and reached effective therapeutic concentration after intravenous administration. It significantly reduced brain infarction and modestly preserved the neurological function of stroke-affected arm. TBN suppressed over-expression of neuroinflammatory marker vimentin and decreased the numbers of GFAP-positive cells, while reversed down-regulation of myelination-associated protein 2', 3'-cyclic-nucleotide 3'-phosphodiesterase and increased the numbers of NeuN-positive cells in the ipsilateral peri-infarct area. TBN may serve as a promising new clinical candidate for the treatment of ischemic stroke.


Assuntos
Barreira Hematoencefálica , Infarto Encefálico , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/farmacologia , Pirazinas/farmacologia , Acidente Vascular Cerebral , Animais , Biomarcadores/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Infarto Encefálico/diagnóstico por imagem , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/metabolismo , Modelos Animais de Doenças , Macaca fascicularis , Masculino , Fármacos Neuroprotetores/química , Pirazinas/química , Bases de Schiff/química , Bases de Schiff/farmacologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo
20.
J Am Soc Mass Spectrom ; 27(9): 1454-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27278824

RESUMO

We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H](+●) and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS(3) dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%-94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in Cu(II)(2,2':6',2″-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR](+●) that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates. Graphical Abstract ᅟ.


Assuntos
Hidrogênio/química , Tirosina/química , Cátions , Elétrons , Radicais Livres , Peptídeos/química , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...