Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36365450

RESUMO

Classical genetic engineering and new genome editing techniques, especially the CRISPR/Cas technology, increase the possibilities for modifying the genetic material in organisms. These technologies have the potential to provide novel agricultural traits, including modified microorganisms and environmental applications. However, legitimate safety concerns arise from the unintended genetic modifications (GM) that have been reported as side-effects of such techniques. Here, we systematically review the scientific literature for studies that have investigated unintended genomic alterations in plants modified by the following GM techniques: Agrobacterium tumefaciens-mediated gene transfer, biolistic bombardment, and CRISPR-Cas9 delivered via Agrobacterium-mediated gene transfer (DNA-based), biolistic bombardment (DNA-based) and as ribonucleoprotein complexes (RNPs). The results of our literature review show that the impact of such techniques in host genomes varies from small nucleotide polymorphisms to large genomic variation, such as segmental duplication, chromosome truncation, trisomy, chromothripsis, breakage fusion bridge, including large rearrangements of DNA vector-backbone sequences. We have also reviewed the type of analytical method applied to investigate the genomic alterations and found that only five articles used whole genome sequencing in their analysis methods. In addition, larger structural variations detected in some studies would not be possible without long-read sequencing strategies, which shows a potential underestimation of such effects in the literature. As new technologies are constantly evolving, a more thorough examination of prospective analytical methods should be conducted in the future. This will provide regulators working in the field of genetically modified and gene-edited organisms with valuable information on the ability to detect and identify genomic interventions.

2.
Genome Res ; 31(2): 225-238, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33361111

RESUMO

Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana, where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth.

3.
Plant Mol Biol ; 98(3): 219-231, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30191440

RESUMO

KEY MESSAGE: Leveraging the heightened levels of polymorphism in NB-ARC-related protein encoding genes in higher plants, a bioinformatic pipeline was created to identify regions in this gene family from sequenced plant genomes that exhibit fragment length or single nucleotide differences in different accessions of the same species. Testing this approach with the aquatic plant Spirodela polyrhiza demonstrated its superior performance in comparison with currently available genotyping technologies based on PCR amplification. Rapid and economical genotyping tools that can reliably distinguish species and intraspecific variations in plants can be powerful tools for biogeographical and ecological studies. Clones of the cosmopolitan duckweed species, Spirodela polyrhiza, are difficult to distinguish morphologically due to their highly abbreviated architecture and inherently low levels of sequence variation. The use of plastidic markers and generic Amplification Fragment Length Polymorphism approaches have met with limited success in resolving clones of S. polyrhiza from diverse geographical locales. Using whole genome sequencing data from nine S. polyrhiza clones as a training set, we created an informatic pipeline to identify and rank polymorphic regions from nuclear-encoded NB-ARC-related genes to design markers for PCR, Sanger sequencing (barcoding), and fragment length analysis. With seven primer sets, we found 21 unique fingerprints from a set of 23 S. polyrhiza clones. However, three of these clones share the same fingerprint and are indistinguishable by these markers. These primer sets can also be used as interspecific barcoding tools to rapidly resolve S. polyrhiza from the closely related S. intermedia species without the need for DNA sequencing. Our work demonstrates a general approach of using hyper-polymorphic loci within genomes as a resource to produce facile tools that can have high resolving power for genotyping applications.


Assuntos
Araceae/genética , Clonagem de Organismos , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Impressões Digitais de DNA , DNA de Plantas/genética , Técnicas de Amplificação de Ácido Nucleico , Proteínas de Plantas/genética
4.
Plant J ; 96(3): 670-684, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30054939

RESUMO

Duckweeds are the fastest growing angiosperms and have the potential to become a new generation of sustainable crops. Although a seed plant, Spirodela polyrhiza clones rarely flower and multiply mainly through vegetative propagation. Whole-genome sequencing using different approaches and clones yielded two reference maps. One for clone 9509, supported in its assembly by optical mapping of single DNA molecules, and one for clone 7498, supported by cytogenetic assignment of 96 fingerprinted bacterial artificial chromosomes (BACs) to its 20 chromosomes. However, these maps differ in the composition of several individual chromosome models. We validated both maps further to resolve these differences and addressed whether they could be due to chromosome rearrangements in different clones. For this purpose, we applied sequential multicolor fluorescence in situ hybridization (mcFISH) to seven S. polyrhiza clones, using 106 BACs that were mapped onto the 39 pseudomolecules for clone 7498. Furthermore we integrated high-depth Oxford Nanopore (ON) sequence data for clone 9509 to validate and revise the previously assembled chromosome models. We found no major structural rearrangements between these seven clones, identified seven chimeric pseudomolecules and Illumina assembly errors in the previous maps, respectively. A new S. polyrhiza genome map with high contiguity was produced with the ON sequence data and genome-wide synteny analysis supported the occurrence of two Whole Genome Duplication events during its evolution. This work generated a high confidence genome map for S. polyrhiza at the chromosome scale, and illustrates the complementarity of independent approaches to produce whole-genome assemblies in the absence of a genetic map.


Assuntos
Araceae/genética , Cromossomos de Plantas/genética , Genoma de Planta/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Hibridização in Situ Fluorescente , Nanoporos , Sintenia
5.
Plant J ; 89(3): 617-635, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27754575

RESUMO

Spirodela polyrhiza is a fast-growing aquatic monocot with highly reduced morphology, genome size and number of protein-coding genes. Considering these biological features of Spirodela and its basal position in the monocot lineage, understanding its genome architecture could shed light on plant adaptation and genome evolution. Like many draft genomes, however, the 158-Mb Spirodela genome sequence has not been resolved to chromosomes, and important genome characteristics have not been defined. Here we deployed rapid genome-wide physical maps combined with high-coverage short-read sequencing to resolve the 20 chromosomes of Spirodela and to empirically delineate its genome features. Our data revealed a dramatic reduction in the number of the rDNA repeat units in Spirodela to fewer than 100, which is even fewer than that reported for yeast. Consistent with its unique phylogenetic position, small RNA sequencing revealed 29 Spirodela-specific microRNA, with only two being shared with Elaeis guineensis (oil palm) and Musa balbisiana (banana). Combining DNA methylation data and small RNA sequencing enabled the accurate prediction of 20.5% long terminal repeats (LTRs) that doubled the previous estimate, and revealed a high Solo:Intact LTR ratio of 8.2. Interestingly, we found that Spirodela has the lowest global DNA methylation levels (9%) of any plant species tested. Taken together our results reveal a genome that has undergone reduction, likely through eliminating non-essential protein coding genes, rDNA and LTRs. In addition to delineating the genome features of this unique plant, the methodologies described and large-scale genome resources from this work will enable future evolutionary and functional studies of this basal monocot family.


Assuntos
Araceae/genética , Mapeamento Cromossômico/métodos , Genoma de Planta/genética , Análise de Sequência de DNA/métodos , Cromossomos de Plantas/genética , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas/genética , Variação Genética , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...